Fixed solar merging script.

This commit is contained in:
Luka 2022-05-24 10:01:38 +02:00
parent 7c4b40eb7c
commit 3e3768b4b6
2 changed files with 266 additions and 154 deletions

View File

@ -50,11 +50,24 @@ def create_edges(svala_data, source_par, target_par):
# create links to ids mapper
links_ids_mapper = {}
edges_of_one_type = set()
for k, v in svala_data['edges'].items():
has_source = False
has_target = False
for el in v['ids']:
# create edges of one type
if el[0] == 's':
has_source = True
if el[0] == 't':
has_target = True
# create links_ids_mapper
if el not in links_ids_mapper:
links_ids_mapper[el] = []
links_ids_mapper[el].append(k)
if not has_source or not has_target:
edges_of_one_type.add(k)
# create edge order
edges_order = []
@ -80,10 +93,10 @@ def create_edges(svala_data, source_par, target_par):
check_s_i = not check_s_i
any_addition = False
# if id_of_interest not in links_ids_mapper:
# print('NOOOOO')
if id_of_interest not in links_ids_mapper:
print('NOOOOO')
for edge_id in links_ids_mapper[id_of_interest]:
if edge_id not in edges_processed:
if edge_id not in edges_processed and edge_id not in edges_of_one_type:
any_addition = True
edges_order.append(edge_id)
edges_processed.add(edge_id)
@ -101,13 +114,13 @@ def create_edges(svala_data, source_par, target_par):
target_ids = [target_mapper[el] for el in svala_data['edges'][edge_id]['ids'] if el in target_mapper]
ids = svala_data['edges'][edge_id]['ids']
source_ok = [el[0] == 't' or el in source_sentence_ids[source_sent_id] for el in ids]
source_ok = [el[0] == 't' or el in source_sentence_ids[source_sent_id] for el in ids] if source_sentence_ids else []
source_ok_all = all(source_ok)
if not source_ok_all:
source_sent_id += 1
target_ok = [el[0] == 's' or el in target_sentence_ids[target_sent_id] for el in ids]
target_ok = [el[0] == 's' or el in target_sentence_ids[target_sent_id] for el in ids] if target_sentence_ids else []
target_ok_all = all(target_ok)
if not target_ok_all:
@ -130,19 +143,19 @@ def add_token(svala_i, source_i, target_i, el, source, target, edges, svala_data
target_token_id = f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{target_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
lemma = el.attrib['lemma'] if token_tag == 'w' else el.text
source.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': source_token_id, 'space_after': False})
target.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': target_token_id, 'space_after': False})
source.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': source_token_id, 'space_after': False, 'svala_id': source_id})
target.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': target_token_id, 'space_after': False, 'svala_id': target_id})
edges.append({'source_ids': [source_token_id], 'target_ids': [target_token_id], 'labels': labels})
def add_error_token(el, out_list, sentence_string_id, out_list_i, out_list_ids, is_source):
def add_error_token(el, out_list, sentence_string_id, out_list_i, out_list_ids, is_source, s_t_id):
sentence_string_id_split = sentence_string_id.split('.')
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{out_list_i}' if is_source \
else f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{out_list_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
lemma = el.attrib['lemma'] if token_tag == 'w' else el.text
out_list.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': source_token_id, 'space_after': False})
out_list.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': source_token_id, 'space_after': False, 'svala_id': s_t_id})
out_list_ids.append(source_token_id)
@ -169,7 +182,7 @@ def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_da
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -185,7 +198,7 @@ def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_da
target_id = "t" + ind
target_edge_ids.append(target_id)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False, target_id)
target_i += 1
svala_i += 1
@ -201,7 +214,7 @@ def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_da
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l2, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l2, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -217,7 +230,7 @@ def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_da
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l3, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l3, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -233,7 +246,7 @@ def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_da
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l4, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l4, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -248,7 +261,7 @@ def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_da
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l5, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l5, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -263,7 +276,7 @@ def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_da
target_id = "t" + ind
target_edge_ids.append(target_id)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False, target_id)
target_i += 1
svala_i += 1
@ -292,7 +305,7 @@ def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, s
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -308,7 +321,7 @@ def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, s
target_id = "t" + ind
target_edge_ids.append(target_id)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False, target_id)
target_i += 1
svala_i += 1
@ -324,7 +337,7 @@ def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, s
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l2, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l2, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -340,7 +353,7 @@ def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, s
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l3, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l3, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -356,7 +369,7 @@ def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, s
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l4, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l4, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -371,7 +384,7 @@ def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, s
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l5, source, sentence_string_id, source_i, source_ids, True)
add_error_token(el_l5, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
@ -536,6 +549,9 @@ def process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_erro
sentence_edges = []
par_source = []
par_target = []
for sentence_id, sentence in enumerate(sentences):
source = []
target = []
@ -558,143 +574,19 @@ def process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_erro
target_i += 1
elif el.tag.startswith('u'):
svala_i, source_i, target_i = add_errors_func(svala_i, source_i, target_i, el, source, target,
svala_data, sentence_string_id, edges=edges)
svala_data, sentence_string_id)
elif el.tag.startswith('c'):
if len(source) > 0:
source[-1]['space_after'] = True
if len(target) > 0:
target[-1]['space_after'] = True
sentence_edges.append(edges)
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
if len(source) > 0:
source_conllu_annotated = nlp(source_conllu).to_conll()
if len(target) > 0:
target_conllu_annotated = nlp(target_conllu).to_conll()
if len(source) > 0:
complete_source_conllu += source_conllu_annotated
complete_target_conllu += target_conllu_annotated
if len(source) > 0:
source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
if len(target) > 0:
target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
if len(source) > 0:
etree_source_sentences.append(construct_sentence_from_list(str(sentence_id), source_conllu_parsed, True))
if len(target) > 0:
etree_target_sentences.append(construct_sentence_from_list(str(sentence_id), target_conllu_parsed, False))
return etree_source_sentences, etree_target_sentences, sentence_edges
def read_raw_text(path):
with open(path, 'r') as rf:
return rf.read()
def map_svala_tokenized(svala_data_part, tokenized_paragraph):
paragraph_res = []
svala_data_i = 0
for sentence in tokenized_paragraph:
sentence_res = []
for tok in sentence:
tag = 'pc' if 'xpos' in tok and tok['xpos'] == 'Z' else 'w'
if 'misc' in tok:
assert tok['misc'] == 'SpaceAfter=No'
space_after = not 'misc' in tok
if svala_data_part[svala_data_i]['text'].strip() != tok['text']:
raise 'Word mismatch!'
sentence_res.append({'token': tok['text'], 'tag': tag, 'id': tok['id'][0], 'space_after': space_after, 'svala_id': svala_data_part[svala_data_i]['id']})
svala_data_i += 1
paragraph_res.append(sentence_res)
return paragraph_res
def update_ids(pretag, in_list):
for el in in_list:
el['id'] = f'{pretag}.{el["id"]}'
def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func, nlp, complete_source_conllu, complete_target_conllu, source_raw_text, target_raw_text, nlp_tokenize):
etree_source_sentences = []
etree_target_sentences = []
sentence_edges = []
if source_raw_text is not None:
text = read_raw_text(source_raw_text)
raw_text, source_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text)
# source_tokenized = nlp_tokenize()
source_res = map_svala_tokenized(svala_data['source'], source_tokenized)
if target_raw_text is not None:
text = read_raw_text(target_raw_text)
raw_text, target_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text)
target_res = map_svala_tokenized(svala_data['target'], target_tokenized)
# TODO RETURN IF SOURCE AND TARGET ARE NOT NONE
par_source = []
par_target = []
for sentence_id, sentence in enumerate(sentences):
source = []
target = []
sentence_id += 1
source_i = 1
target_i = 1
sentence_string_id = paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] + f'.{sentence_id}'
if sentence_string_id == 'solar185.2.1':
print('HERE!')
sentence_string_id_split = sentence_string_id.split('.')
for el in sentence:
if el.tag.startswith('w'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
# add_edges(source_id, target_id, svala_data, edges, source_token_id, target_token_id)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('pc'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
# add_edges(source_id, target_id, svala_data, edges, source_token_id, target_token_id)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('u'):
if source_raw_text is None or target_raw_text is None:
svala_i, source_i, target_i = add_errors_source_target_only(svala_i, source_i, target_i, el, source, target, svala_data, sentence_string_id)
else:
svala_i, source_i, target_i = add_errors_func(svala_i, source_i, target_i, el, source, target,
svala_data, sentence_string_id)
elif el.tag.startswith('c'):
if len(source) > 0:
source[-1]['space_after'] = True
if len(target) > 0:
target[-1]['space_after'] = True
if source_raw_text is not None and sentence_id - 1 < len(source_res):
source = source_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}', source)
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
if target_raw_text is not None and sentence_id - 1 < len(target_res):
target = target_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}', target)
par_source.append(source)
par_target.append(target)
# sentence_edges.append(edges)
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
@ -722,6 +614,192 @@ def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_err
return etree_source_sentences, etree_target_sentences, sentence_edges
def read_raw_text(path):
with open(path, 'r') as rf:
return rf.read()
def map_svala_tokenized(svala_data_part, tokenized_paragraph):
paragraph_res = []
svala_data_i = 0
wierd_sign_count = 0
for sentence in tokenized_paragraph:
sentence_res = []
sentence_id = 0
for tok in sentence:
tag = 'pc' if 'xpos' in tok and tok['xpos'] == 'Z' else 'w'
if 'misc' in tok:
assert tok['misc'] == 'SpaceAfter=No'
space_after = not 'misc' in tok
if svala_data_part[svala_data_i]['text'].strip() != tok['text']:
if tok['text'] == '§' and svala_data_part[svala_data_i]['text'].strip() == '§§§':
wierd_sign_count += 1
if wierd_sign_count < 3:
continue
else:
tok['text'] = '§§§'
wierd_sign_count = 0
else:
raise 'Word mismatch!'
sentence_id += 1
sentence_res.append({'token': tok['text'], 'tag': tag, 'id': sentence_id, 'space_after': space_after, 'svala_id': svala_data_part[svala_data_i]['id']})
svala_data_i += 1
paragraph_res.append(sentence_res)
return paragraph_res
def map_svala_solar2(svala_data_part, solar2_paragraph):
paragraph_res = []
svala_data_i = 0
wierd_sign_count = 0
for sentence in solar2_paragraph:
sentence_res = []
sentence_id = 0
for tok in sentence:
# if svala_data_part[svala_data_i]['text'].strip() != tok['token']:
# if tok['text'] == '§' and svala_data_part[svala_data_i]['token'].strip() == '§§§':
# wierd_sign_count += 1
# if wierd_sign_count < 3:
# continue
# else:
# tok['text'] = '§§§'
# wierd_sign_count = 0
# else:
# raise 'Word mismatch!'
assert svala_data_part[svala_data_i]['text'].strip() == tok['token']
sentence_id += 1
tok['svala_id'] = svala_data_part[svala_data_i]['id']
svala_data_i += 1
def update_ids(pretag, in_list):
for el in in_list:
el['id'] = f'{pretag}.{el["id"]}'
def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func, nlp, complete_source_conllu, complete_target_conllu, source_raw_text, target_raw_text, nlp_tokenize):
etree_source_sentences = []
etree_target_sentences = []
sentence_edges = []
if source_raw_text is not None:
text = read_raw_text(source_raw_text)
raw_text, source_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text) if text else [], [], []
# source_tokenized = nlp_tokenize()
source_res = map_svala_tokenized(svala_data['source'], source_tokenized)
if target_raw_text is not None:
text = read_raw_text(target_raw_text)
raw_text, target_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text) if text else [], [], []
target_res = map_svala_tokenized(svala_data['target'], target_tokenized)
# TODO RETURN IF SOURCE AND TARGET ARE NOT NONE
par_source = []
par_target = []
sentences_len = len(sentences)
if source_raw_text is not None:
sentences_len = max(sentences_len, len(source_res))
if target_raw_text is not None:
sentences_len = max(sentences_len, len(target_res))
for sentence_id in range(sentences_len):
# assert sentence_id < len(sentences)
# sentence_id += 1
# for sentence_id, sentence in enumerate(sentences):
source = []
target = []
sentence_id += 1
source_i = 1
target_i = 1
sentence_string_id = paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] + f'.{sentence_id}'
sentence_string_id_split = sentence_string_id.split('.')
if sentence_id - 1 < len(sentences):
sentence = sentences[sentence_id - 1]
for el in sentence:
# if source_i == 101:
# print('HMM')
if el.tag.startswith('w'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
# add_edges(source_id, target_id, svala_data, edges, source_token_id, target_token_id)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('pc'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
# add_edges(source_id, target_id, svala_data, edges, source_token_id, target_token_id)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('u'):
if source_raw_text is None or target_raw_text is None:
svala_i, source_i, target_i = add_errors_source_target_only(svala_i, source_i, target_i, el, source, target, svala_data, sentence_string_id)
else:
svala_i, source_i, target_i = add_errors_func(svala_i, source_i, target_i, el, source, target,
svala_data, sentence_string_id)
elif el.tag.startswith('c'):
if len(source) > 0:
source[-1]['space_after'] = True
if len(target) > 0:
target[-1]['space_after'] = True
if source_raw_text is not None and sentence_id - 1 < len(source_res):
source = source_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}', source)
par_source.append(source)
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
if target_raw_text is not None and sentence_id - 1 < len(target_res):
target = target_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}', target)
par_target.append(target)
if source_raw_text is None:
par_source.append(source)
if target_raw_text is None:
par_target.append(target)
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
if len(source) > 0:
source_conllu_annotated = nlp(source_conllu).to_conll()
if len(target) > 0:
target_conllu_annotated = nlp(target_conllu).to_conll()
if len(source) > 0:
complete_source_conllu += source_conllu_annotated
if len(target) > 0:
complete_target_conllu += target_conllu_annotated
if len(source) > 0:
source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
if len(target) > 0:
target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
if len(source) > 0:
etree_source_sentences.append(construct_sentence_from_list(str(sentence_id), source_conllu_parsed, True))
if len(target) > 0:
etree_target_sentences.append(construct_sentence_from_list(str(sentence_id), target_conllu_parsed, False))
# reannotate svala_ids
if source_raw_text is None:
map_svala_solar2(svala_data['source'], par_source)
if target_raw_text is None:
map_svala_solar2(svala_data['target'], par_target)
sentence_edges = create_edges(svala_data, par_source, par_target)
return etree_source_sentences, etree_target_sentences, sentence_edges
def process_file(et, args, nlp, nlp_tokenize):
if os.path.exists(args.results_folder):
shutil.rmtree(args.results_folder)
@ -735,10 +813,19 @@ def process_file(et, args, nlp, nlp_tokenize):
complete_target_conllu = ''
document_edges = []
filename_encountered = False
i = 0
folders_count = 5484
for div in et.iter('div'):
bibl = div.find('bibl')
file_name = bibl.get('n')
file_name = file_name.replace('/', '_')
print(f'{i*100/folders_count} % : {file_name}')
i += 1
# if file_name == 'S20-PI-slo-2-SG-D-2016_2017-30479-12.txt':
# filename_encountered = True
# if not filename_encountered:
# continue
svala_path = os.path.join(args.svala_folder, file_name)
corrected_svala_path = os.path.join(args.corrected_svala_folder, file_name)
@ -750,6 +837,12 @@ def process_file(et, args, nlp, nlp_tokenize):
svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in os.listdir(svala_path)]
svala_dict = {e[0]: e[1] for e in svala_list}
if os.path.exists(corrected_svala_path):
corrected_svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in os.listdir(corrected_svala_path)]
corrected_svala_dict = {e[0]: e[1] for e in corrected_svala_list}
svala_dict.update(corrected_svala_dict)
etree_source_paragraphs = []
etree_target_paragraphs = []
paragraph_edges = []
@ -760,10 +853,12 @@ def process_file(et, args, nlp, nlp_tokenize):
svala_i = 1
# read json
# if paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] == 'solar5.7':
# print('here')
svala_file = os.path.join(svala_path, svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']])
corrected_svala_file = os.path.join(corrected_svala_path, svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']])
if os.path.exists(corrected_svala_file):
print('aaa')
# if os.path.exists(corrected_svala_file):
# print('aaa')
add_errors_func = add_errors if not os.path.exists(corrected_svala_file) else add_errors1_0_1
jf = open(svala_file) if not os.path.exists(corrected_svala_file) else open(corrected_svala_file)
svala_data = json.load(jf)
@ -793,16 +888,21 @@ def process_file(et, args, nlp, nlp_tokenize):
etree_target_divs.append((etree_target_paragraphs, copy.deepcopy(etree_bibl)))
document_edges.append(paragraph_edges)
print('APPENDING DOCUMENT...')
etree_source_documents.append(TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's', etree_source_divs))
etree_target_documents.append(TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't', etree_target_divs))
print('BUILDING TEI DOCUMENTS...')
etree_source = build_tei_etrees(etree_source_documents)
etree_target = build_tei_etrees(etree_target_documents)
print('BUILDING LINKS...')
etree_links = build_links(document_edges)
print('BUILDING COMPLETE TEI...')
complete_etree = build_complete_tei(copy.deepcopy(etree_source), copy.deepcopy(etree_target), etree_links)
print('WRITING FILES')
with open(os.path.join(args.results_folder, f"source.conllu"), 'w') as sf:
sf.write(complete_source_conllu)
@ -841,7 +941,7 @@ if __name__ == '__main__':
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--svala_folder', default='data/solar.svala',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--corrected_svala_folder', default='data/solar.svala.fixed.1.0.1',
parser.add_argument('--corrected_svala_folder', default='data/solar.svala.fixed.1.0.1_2',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--results_folder', default='data/results/solar3.0',
help='input file in (gz or xml currently). If none, then just database is loaded')

View File

@ -38,12 +38,23 @@ def compare_files(corrected_file, original_file):
def main(args):
# create mapper to corrected files
corrected_files_mapper = {}
filename_encountered = False
for foldername in os.listdir(args.corrected_folder):
orig_name = 'KUS' + foldername.split('KUS')[1]
# if orig_name == 'KUS-G-slo-4-GO-E-2009-10105':
# filename_encountered = True
# if not filename_encountered:
# continue
corrected_files_mapper[orig_name] = foldername
filename_encountered = False
for foldername in os.listdir(args.original_folder):
# if foldername == 'KUS-G-slo-4-GO-E-2009-10105':
# filename_encountered = True
# if not filename_encountered:
# continue
for filename in os.listdir(os.path.join(args.original_folder, foldername)):
fixed = False
of = os.path.join(args.original_folder, foldername, filename)
copy_filename = filename
if filename.endswith('_problem.json'):
@ -55,12 +66,13 @@ def main(args):
if filename.endswith('_problem.json'):
new_filename = filename[:-13] + '_popravljeno.json'
if os.path.exists(os.path.join(args.corrected_folder, corrected_files_mapper[foldername], new_filename)):
fixed = True
filename = new_filename
cf = os.path.join(args.corrected_folder, corrected_files_mapper[foldername], filename)
cor_files = read_json(cf)
ori_files = read_json(of)
target, source = compare_files(cor_files, ori_files)
if target or source:
if target or source or fixed:
if not os.path.exists(cpfol):
os.mkdir(cpfol)
shutil.copyfile(cf, cpf)