80 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
# -*- coding: utf-8 -*-
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import sys
 | 
						|
 | 
						|
sys.path.insert(0, '../../../')
 | 
						|
from prepare_data import *
 | 
						|
 | 
						|
import pickle
 | 
						|
 | 
						|
# from keras import backend as Input
 | 
						|
np.random.seed(7)
 | 
						|
 | 
						|
# obtain data from parameters
 | 
						|
if len(sys.argv) < 3:
 | 
						|
    print('Please provide arguments for this script to work. First argument should be location of file with unaccented words and morphological data, '
 | 
						|
          'second the name of file where you would like to save results to and third location of ReLDI tagger. Example: python accentuate.py '
 | 
						|
          '\'test_data/original_connected_text\' \'test_data/accented_connected_text\' \'../reldi_tagger\'')
 | 
						|
    raise Exception
 | 
						|
read_location = sys.argv[1]
 | 
						|
write_location = sys.argv[2]
 | 
						|
reldi_location = sys.argv[3]
 | 
						|
 | 
						|
# get environment variables necessary for calculations
 | 
						|
pickle_input = open('preprocessed_data/environment.pkl', 'rb')
 | 
						|
environment = pickle.load(pickle_input)
 | 
						|
dictionary = environment['dictionary']
 | 
						|
max_word = environment['max_word']
 | 
						|
max_num_vowels = environment['max_num_vowels']
 | 
						|
vowels = environment['vowels']
 | 
						|
accented_vowels = environment['accented_vowels']
 | 
						|
feature_dictionary = environment['feature_dictionary']
 | 
						|
syllable_dictionary = environment['syllable_dictionary']
 | 
						|
 | 
						|
# get models
 | 
						|
data = Data('l', shuffle_all_inputs=False)
 | 
						|
letter_location_model, syllable_location_model, syllabled_letters_location_model = data.load_location_models(
 | 
						|
    'cnn/word_accetuation/cnn_dictionary/v5_3/20_final_epoch.h5',
 | 
						|
    'cnn/word_accetuation/syllables/v3_3/20_final_epoch.h5',
 | 
						|
    'cnn/word_accetuation/syllabled_letters/v3_3/20_final_epoch.h5')
 | 
						|
 | 
						|
letter_location_co_model, syllable_location_co_model, syllabled_letters_location_co_model = data.load_location_models(
 | 
						|
    'cnn/word_accetuation/cnn_dictionary/v5_2/20_final_epoch.h5',
 | 
						|
    'cnn/word_accetuation/syllables/v3_2/20_final_epoch.h5',
 | 
						|
    'cnn/word_accetuation/syllabled_letters/v3_2/20_final_epoch.h5')
 | 
						|
 | 
						|
letter_type_model, syllable_type_model, syllabled_letter_type_model = data.load_type_models(
 | 
						|
    'cnn/accent_classification/letters/v3_1/20_final_epoch.h5',
 | 
						|
    'cnn/accent_classification/syllables/v2_1/20_final_epoch.h5',
 | 
						|
    'cnn/accent_classification/syllabled_letters/v2_1/20_final_epoch.h5')
 | 
						|
 | 
						|
letter_type_co_model, syllable_type_co_model, syllabled_letter_type_co_model = data.load_type_models(
 | 
						|
    'cnn/accent_classification/letters/v3_0/20_final_epoch.h5',
 | 
						|
    'cnn/accent_classification/syllables/v2_0/20_final_epoch.h5',
 | 
						|
    'cnn/accent_classification/syllabled_letters/v2_0/20_final_epoch.h5')
 | 
						|
 | 
						|
# get word tags
 | 
						|
tagged_words, original_text = data.tag_words(reldi_location, read_location)
 | 
						|
 | 
						|
# find accentuation locations
 | 
						|
predictions = data.get_ensemble_location_predictions(tagged_words, letter_location_model, syllable_location_model, syllabled_letters_location_model,
 | 
						|
                                                     letter_location_co_model, syllable_location_co_model, syllabled_letters_location_co_model,
 | 
						|
                                                     dictionary, max_word, max_num_vowels, vowels, accented_vowels, feature_dictionary,
 | 
						|
                                                     syllable_dictionary)
 | 
						|
 | 
						|
location_accented_text = data.create_connected_text_locations(tagged_words, original_text, predictions, vowels)
 | 
						|
 | 
						|
# accentuate text
 | 
						|
location_y = np.around(predictions)
 | 
						|
type_predictions = data.get_ensemble_type_predictions(tagged_words, location_y, letter_type_model, syllable_type_model, syllabled_letter_type_model,
 | 
						|
                                                      letter_type_co_model, syllable_type_co_model, syllabled_letter_type_co_model,
 | 
						|
                                                      dictionary, max_word, max_num_vowels, vowels, accented_vowels, feature_dictionary,
 | 
						|
                                                      syllable_dictionary)
 | 
						|
 | 
						|
accented_text = data.create_connected_text_accented(tagged_words, original_text, type_predictions, location_y, vowels, accented_vowels)
 | 
						|
 | 
						|
# save accentuated text
 | 
						|
with open(write_location, 'w') as f:
 | 
						|
    f.write(accented_text)
 |