stress_asignment/prepare_data.py

1177 lines
42 KiB
Python

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
# text in Western (Windows 1252)
import numpy as np
import h5py
import gc
import math
import keras.backend as K
import os.path
# functions for saving, loading and shuffling whole arrays to ram
def save_inputs(file_name, X, y, other_features=[]):
h5f = h5py.File(file_name, 'w')
if other_features == []:
adict = dict(X=X, y=y)
else:
adict = dict(X=X, X_other_features=other_features, y=y)
for k, v in adict.items():
h5f.create_dataset(k, data=v)
h5f.close()
def load_inputs(file_name, other_features=False):
h5f = h5py.File(file_name,'r')
X = h5f['X'][:]
y = h5f['y'][:]
if other_features:
X_other_features = h5f['X_other_features'][:]
h5f.close()
return X, X_other_features, y
h5f.close()
return X, y
def shuffle_inputs(X, y, shuffle_vector_location, X_pure=[]):
if os.path.exists(shuffle_vector_location):
s = load_shuffle_vector(shuffle_vector_location)
else:
s = np.arange(X.shape[0])
np.random.shuffle(s)
create_and_save_shuffle_vector(shuffle_vector_location, s)
# s = np.arange(X.shape[0])
# np.random.shuffle(s)
X = X[s]
y = y[s]
if X_pure != []:
X_pure = X_pure[s]
return X, y, X_pure
else:
return X, y
# functions for saving and loading partial arrays to ram
def create_and_save_inputs(file_name, part, X, y, X_pure):
# X, y, X_pure = generate_full_vowel_matrix_inputs()
h5f = h5py.File(file_name + part + '.h5', 'w')
adict=dict(X=X, y=y, X_pure=X_pure)
for k, v in adict.items():
h5f.create_dataset(k,data=v)
h5f.close()
def load_extended_inputs(file_name, obtain_range):
h5f = h5py.File(file_name, 'r')
X = h5f['X'][obtain_range[0]:obtain_range[1]]
y = h5f['y'][obtain_range[0]:obtain_range[1]]
X_pure = h5f['X_pure'][obtain_range[0]:obtain_range[1]]
h5f.close()
return X, y, X_pure
# functions for creating and loading shuffle vector
def create_and_save_shuffle_vector(file_name, shuffle_vector):
# X, y, X_pure = generate_full_vowel_matrix_inputs()
h5f = h5py.File(file_name, 'w')
adict = dict(shuffle_vector=shuffle_vector)
for k, v in adict.items():
h5f.create_dataset(k, data=v)
h5f.close()
def load_shuffle_vector(file_name):
h5f = h5py.File(file_name, 'r')
# shuffle_vector = h5f['shuffle_vector'][[179859, 385513, 893430]]
shuffle_vector = h5f['shuffle_vector'][:]
h5f.close()
return shuffle_vector
# functions for saving and loading model - ONLY WHERE KERAS IS NOT NEEDED
# def save_model(model, file_name):
# h5f = h5py.File(file_name, 'w')
# adict = dict(W1=model['W1'], b1=model['b1'], W2=model['W2'], b2=model['b2'])
# for k,v in adict.items():
# h5f.create_dataset(k,data=v)
#
# h5f.close()
#
#
# def load_model(file_name):
# h5f = h5py.File(file_name,'r')
# model = {}
# W1.set_value(h5f['W1'][:])
# b1.set_value(h5f['b1'][:])
# W2.set_value(h5f['W2'][:])
# b2.set_value(h5f['b2'][:])
# h5f.close()
# return model
# functions for creating X and y from content
def read_content():
print('READING CONTENT...')
with open('../../../data/SlovarIJS_BESEDE_utf8.lex') as f:
content = f.readlines()
print('CONTENT READ SUCCESSFULY')
return [x.split('\t') for x in content]
def is_vowel(word_list, position, vowels):
if word_list[position] in vowels:
return True
if (word_list[position] == u'r' or word_list[position] == u'R') and (position - 1 < 0 or word_list[position - 1] not in vowels) and (position + 1 >= len(word_list) or word_list[position + 1] not in vowels):
return True
return False
def is_accetuated_vowel(word_list, position, accetuated_vowels):
if word_list[position] in accetuated_vowels:
return True
return False
def create_dict():
content = read_content()
print('CREATING DICTIONARY...')
# CREATE dictionary AND max_word
accetuated_vowels = [u'à', u'á', u'ä', u'é', u'ë', u'ì', u'í', u'î', u'ó', u'ô', u'ö', u'ú', u'ü']
default_vowels = [u'a', u'e', u'i', u'o', u'u']
vowels = []
vowels.extend(accetuated_vowels)
vowels.extend(default_vowels)
dictionary_output = ['']
dictionary_input = ['']
line = 0
max_word = 0
# ADD 'EMPTY' VOWEL
max_num_vowels = 0
for el in content:
num_vowels = 0
i = 0
try:
if len(el[3]) > max_word:
max_word = len(el[3])
if len(el[0]) > max_word:
max_word = len(el[0])
for c in list(el[3]):
if is_vowel(list(el[3]), i, vowels):
num_vowels += 1
if c not in dictionary_output:
dictionary_output.append(c)
i += 1
for c in list(el[0]):
if c not in dictionary_input:
dictionary_input.append(c)
if num_vowels > max_num_vowels:
max_num_vowels = num_vowels
except Exception:
print(line - 1)
print(el)
break
line += 1
dictionary_input = sorted(dictionary_input)
max_num_vowels += 1
print('DICTIONARY CREATION SUCCESSFUL!')
return dictionary_input, max_word, max_num_vowels, content, vowels, accetuated_vowels
# GENERATE X and y
def generate_presentable_y(accetuations_list, word_list, max_num_vowels):
while len(accetuations_list) < 2:
accetuations_list.append(0)
if len(accetuations_list) > 2:
accetuations_list = accetuations_list[:2]
accetuations_list = np.array(accetuations_list)
final_position = accetuations_list[0] + max_num_vowels * accetuations_list[1]
return final_position
# def generate_inputs():
# dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels = create_dict()
#
# print('GENERATING X AND y...')
# X = np.zeros((len(content), max_word*len(dictionary)))
# y = np.zeros((len(content), max_num_vowels * max_num_vowels ))
#
# i = 0
# for el in content:
# j = 0
# for c in list(el[0]):
# index = 0
# for d in dictionary:
# if c == d:
# X[i][index + j * max_word] = 1
# break
# index += 1
# j += 1
# j = 0
# word_accetuations = []
# num_vowels = 0
# for c in list(el[3]):
# index = 0
# if is_vowel(el[3], j, vowels):
# num_vowels += 1
# for d in accetuated_vowels:
# if c == d:
# word_accetuations.append(num_vowels)
# break
# index += 1
# j += 1
# y[i][generate_presentable_y(word_accetuations, list(el[3]), max_num_vowels)] = 1
# i += 1
# print('GENERATION SUCCESSFUL!')
# print('SHUFFELING INPUTS...')
# X, y = shuffle_inputs(X, y)
# print('INPUTS SHUFFELED!')
# return X, y
#
#
# def generate_matrix_inputs():
# dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels = create_dict()
#
# print('GENERATING X AND y...')
# # X = np.zeros((len(content), max_word*len(dictionary)))
# y = np.zeros((len(content), max_num_vowels * max_num_vowels ))
#
# X = []
#
# i = 0
# for el in content:
# # j = 0
# word = []
# for c in list(el[0]):
# index = 0
# character = np.zeros(len(dictionary))
# for d in dictionary:
# if c == d:
# # X[i][index + j * max_word] = 1
# character[index] = 1
# break
# index += 1
# word.append(character)
# # j += 1
# j = 0
# X.append(word)
# word_accetuations = []
# num_vowels = 0
# for c in list(el[3]):
# index = 0
# if is_vowel(el[3], j, vowels):
# num_vowels += 1
# for d in accetuated_vowels:
# if c == d:
# word_accetuations.append(num_vowels)
# break
# index += 1
# j += 1
# y[i][generate_presentable_y(word_accetuations, list(el[3]), max_num_vowels)] = 1
# i += 1
# X = np.array(X)
# print('GENERATION SUCCESSFUL!')
# print('SHUFFELING INPUTS...')
# X, y = shuffle_inputs(X, y)
# print('INPUTS SHUFFELED!')
# return X, y
def generate_full_matrix_inputs(content_shuffle_vector_location, shuffle_vector_location):
dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels = create_dict()
train_content, test_content, validate_content = split_content(content, 0.2, content_shuffle_vector_location)
feature_dictionary = create_feature_dictionary()
# Generate X and y
print('GENERATING X AND y...')
X_train, X_other_features_train, y_train = generate_X_and_y(dictionary, max_word, max_num_vowels, train_content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location + '_train.h5')
X_test, X_other_features_test, y_test = generate_X_and_y(dictionary, max_word, max_num_vowels, test_content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location + '_test.h5')
X_validate, X_other_features_validate, y_validate = generate_X_and_y(dictionary, max_word, max_num_vowels, validate_content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location + '_validate.h5')
print('GENERATION SUCCESSFUL!')
return X_train, X_other_features_train, y_train, X_test, X_other_features_test, y_test, X_validate, X_other_features_validate, y_validate
# generate full matrix, with old features
def old_generate_full_matrix_inputs():
dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels = create_dict()
train_content, validate_content = split_content(content, 0.2)
feature_dictionary = create_feature_dictionary(content)
# Generate X and y
print('GENERATING X AND y...')
X_train, X_other_features_train, y_train = generate_X_and_y(dictionary, max_word, max_num_vowels, train_content, vowels, accetuated_vowels, feature_dictionary)
X_validate, X_other_features_validate, y_validate = generate_X_and_y(dictionary, max_word, max_num_vowels, validate_content, vowels, accetuated_vowels, feature_dictionary)
print('GENERATION SUCCESSFUL!')
return X_train, X_other_features_train, y_train, X_validate, X_other_features_validate, y_validate
# Generate each y as an array of 11 numbers (with possible values between 0 and 1)
def generate_X_and_y(dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location, shuffle=True):
y = np.zeros((len(content), max_num_vowels))
X = np.zeros((len(content), max_word, len(dictionary)))
print('CREATING OTHER FEATURES...')
X_other_features = create_X_features(content, feature_dictionary)
print('OTHER FEATURES CREATED!')
i = 0
for el in content:
j = 0
for c in list(el[0]):
index = 0
for d in dictionary:
if c == d:
X[i][j][index] = 1
break
index += 1
j += 1
j = 0
word_accetuations = []
num_vowels = 0
for c in list(el[3]):
index = 0
if is_vowel(el[3], j, vowels):
num_vowels += 1
for d in accetuated_vowels:
if c == d:
word_accetuations.append(num_vowels)
break
index += 1
j += 1
if len(word_accetuations) > 0:
y_value = 1/len(word_accetuations)
for el in word_accetuations:
# y[i][el] = y_value
y[i][el] = 1
else:
y[i][0] = 1
# y[i][generate_presentable_y(word_accetuations, list(el[3]), max_num_vowels)] = 1
i += 1
if shuffle:
print('SHUFFELING INPUTS...')
X, y, X_other_features = shuffle_inputs(X, y, shuffle_vector_location, X_pure=X_other_features)
print('INPUTS SHUFFELED!')
return X, X_other_features, y
# Generate each y as an array of 121 numbers (with one 1 per line and the rest zeros)
def generate_X_and_y_one_classification(dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels, feature_dictionary):
y = np.zeros((len(content), max_num_vowels * max_num_vowels ))
X = np.zeros((len(content), max_word, len(dictionary)))
print('CREATING OTHER FEATURES...')
X_other_features = create_X_features(content, feature_dictionary)
print('OTHER FEATURES CREATED!')
i = 0
for el in content:
j = 0
for c in list(el[0]):
index = 0
for d in dictionary:
if c == d:
X[i][j][index] = 1
break
index += 1
j += 1
j = 0
word_accetuations = []
num_vowels = 0
for c in list(el[3]):
index = 0
if is_vowel(el[3], j, vowels):
num_vowels += 1
for d in accetuated_vowels:
if c == d:
word_accetuations.append(num_vowels)
break
index += 1
j += 1
y[i][generate_presentable_y(word_accetuations, list(el[3]), max_num_vowels)] = 1
i += 1
print('SHUFFELING INPUTS...')
X, y, X_other_features = shuffle_inputs(X, y, X_pure=X_other_features)
print('INPUTS SHUFFELED!')
return X, X_other_features, y
def count_vowels(content, vowels):
num_all_vowels = 0
for el in content:
for m in range(len(el[0])):
if is_vowel(list(el[0]), m, vowels):
num_all_vowels += 1
return num_all_vowels
# Data generation for generator inputs
def generate_X_and_y_RAM_efficient(name, split_number):
h5f = h5py.File(name + '.h5', 'w')
dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels = create_dict()
num_all_vowels = count_vowels(content, vowels)
data_X = h5f.create_dataset('X', (num_all_vowels, max_word, len(dictionary)),
maxshape=(num_all_vowels, max_word, len(dictionary)),
dtype=np.uint8)
data_y = h5f.create_dataset('y', (num_all_vowels,),
maxshape=(num_all_vowels,),
dtype=np.uint8)
data_X_pure = h5f.create_dataset('X_pure', (num_all_vowels,),
maxshape=(num_all_vowels,),
dtype=np.uint8)
gc.collect()
print('GENERATING X AND y...')
X_pure = []
X = []
y = []
part_len = len(content)/float(split_number)
current_part_generation = 1
i = 0
num_all_vowels = 0
old_num_all_vowels = 0
for el in content:
j = 0
X_el = np.zeros((max_word, len(dictionary)))
for c in list(el[0]):
index = 0
for d in dictionary:
if c == d:
X_el[j][index] = 1
break
index += 1
j += 1
vowel_i = 0
for m in range(len(el[0])):
if is_vowel(list(el[0]), m, vowels):
X.append(X_el)
X_pure.append(vowel_i)
vowel_i += 1
if is_accetuated_vowel(list(el[3]), m, accetuated_vowels):
y.append(1)
else:
y.append(0)
if current_part_generation * part_len <= i:
print('Saving part '+ str(current_part_generation))
data_X[old_num_all_vowels:num_all_vowels + 1] = np.array(X)
data_y[old_num_all_vowels:num_all_vowels + 1] = np.array(y)
data_X_pure[old_num_all_vowels:num_all_vowels + 1] = np.array(X_pure)
old_num_all_vowels = num_all_vowels + 1
X_pure = []
X = []
y = []
current_part_generation += 1
num_all_vowels += 1
if i%10000 == 0:
print(i)
i += 1
print('Saving part ' + str(current_part_generation))
data_X[old_num_all_vowels:num_all_vowels] = np.array(X)
data_y[old_num_all_vowels:num_all_vowels] = np.array(y)
data_X_pure[old_num_all_vowels:num_all_vowels] = np.array(X_pure)
h5f.close()
# metric for calculation of correct results
# test with:
# print(mean_pred(y_validate[pos], predictions[pos]).eval())
# print(mean_pred(np.array([[ 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.]]),
# np.array([[ 0., 0.51, 0., 0.51, 0., 0., 0., 0., 0., 0., 0.],
# [ 0., 0.92, 0., 0.51, 0., 0., 0., 0., 0., 0., 0.]])).eval())
def actual_accuracy(y_true, y_pred):
return K.mean(K.equal(K.mean(K.equal(K.round(y_true), K.round(y_pred)), axis=-1), 1.0))
# generator for inputs for tracking of data fitting
def generate_fake_epoch(orig_X, orig_X_additional, orig_y, batch_size):
size = orig_X.shape[0]
while 1:
loc = 0
while loc < size:
if loc + batch_size >= size:
yield([orig_X[loc:size], orig_X_additional[loc:size]], orig_y[loc:size])
else:
yield([orig_X[loc:loc + batch_size], orig_X_additional[loc:loc + batch_size]], orig_y[loc:loc + batch_size])
loc += batch_size
# generator for inputs
def generate_arrays_from_file(path, batch_size):
h5f = h5py.File(path, 'r')
X = h5f['X'][:]
y = h5f['y'][:]
X_pure = h5f['X_pure'][:]
yield (X, y, X_pure)
# while 1:
# f = open(path)
# for line in f:
# # create Numpy arrays of input data
# # and labels, from each line in the file
# x, y = process_line(line)
# yield (x, y)
# # f.close()
h5f.close()
# shuffle inputs for generator
def shuffle_full_vowel_inputs(name, orderd_name, parts):
dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels = create_dict()
num_all_vowels = count_vowels(content, vowels)
# num_all_vowels = 12
s = np.arange(num_all_vowels)
np.random.shuffle(s)
h5f = h5py.File(name, 'w')
data_X = h5f.create_dataset('X', (num_all_vowels, max_word, len(dictionary)),
maxshape=(num_all_vowels, max_word, len(dictionary)),
dtype=np.uint8)
data_y = h5f.create_dataset('y', (num_all_vowels,),
maxshape=(num_all_vowels,),
dtype=np.uint8)
data_X_pure = h5f.create_dataset('X_pure', (num_all_vowels,),
maxshape=(num_all_vowels,),
dtype=np.uint8)
gc.collect()
print('Shuffled vector loaded!')
section_range = [0, (num_all_vowels + 1)/parts]
for h in range(1, parts+1):
gc.collect()
new_X = np.zeros((section_range[1] - section_range[0], max_word, len(dictionary)))
new_X_pure = np.zeros(section_range[1] - section_range[0])
new_y = np.zeros(section_range[1] - section_range[0])
targeted_range = [0, (num_all_vowels + 1)/parts]
for i in range(1, parts+1):
X, y, X_pure = load_extended_inputs(orderd_name, targeted_range)
for j in range(X.shape[0]):
if s[j + targeted_range[0]] >= section_range[0] and s[j + targeted_range[0]] < section_range[1]:
# print 's[j] ' + str(s[j + targeted_range[0]]) + ' section_range[0] ' + str(section_range[0]) + ' section_range[1] ' + str(section_range[1])
new_X[s[j + targeted_range[0]] - section_range[0]] = X[j]
new_y[s[j + targeted_range[0]] - section_range[0]] = y[j]
new_X_pure[s[j + targeted_range[0]] - section_range[0]] = X_pure[j]
targeted_range[0] = targeted_range[1]
if targeted_range[1] + (num_all_vowels + 1) / parts < num_all_vowels:
targeted_range[1] += (num_all_vowels + 1) / parts
else:
targeted_range[1] = num_all_vowels
del X, y, X_pure
print('CREATED ' + str(h) + '. PART OF SHUFFLED MATRIX')
data_X[section_range[0]:section_range[1]] = new_X
data_y[section_range[0]:section_range[1]] = new_y
data_X_pure[section_range[0]:section_range[1]] = new_X_pure
section_range[0] = section_range[1]
if section_range[1] + (num_all_vowels + 1)/parts < num_all_vowels:
section_range[1] += (num_all_vowels + 1)/parts
else:
section_range[1] = num_all_vowels
del new_X, new_X_pure, new_y
h5f.close()
# Decoders for inputs and outputs
def decode_X_features(feature_dictionary, X_other_features):
final_word = []
for word in X_other_features:
final_word = []
i = 0
for z in range(len(feature_dictionary)):
for j in range(1, len(feature_dictionary[z])):
if j == 1:
if word[i] == 1:
final_word.append(feature_dictionary[z][1])
i += 1
else:
for k in range(len(feature_dictionary[z][j])):
if word[i] == 1:
final_word.append(feature_dictionary[z][j][k])
i += 1
print(u''.join(final_word))
return u''.join(final_word)
def decode_position(y):
i = 0
res = []
for el in y:
if el >= 0.5:
res.append(i)
i += 1
return res
def old_decode_position(y, max_num_vowels):
max_el = 0
i = 0
pos = -1
for el in y:
if el > max_el:
max_el = el
pos = i
i += 1
return [pos % max_num_vowels, pos / max_num_vowels]
def decode_input(word_encoded, dictionary):
word = ''
for el in word_encoded:
i = 0
for num in el:
if num == 1:
word += dictionary[i]
break
i += 1
return word
def decode_position_from_number(y, max_num_vowels):
return [y % max_num_vowels, y / max_num_vowels]
def generate_input_from_word(word, max_word, dictionary):
x = np.zeros(max_word*len(dictionary))
j = 0
for c in list(word):
index = 0
for d in dictionary:
if c == d:
x[index + j * max_word] = 1
break
index += 1
j += 1
return x
def generate_input_per_vowel_from_word(word, max_word, dictionary, vowels):
X_el = np.zeros((max_word, len(dictionary)))
j = 0
for c in list(word):
index = 0
for d in dictionary:
if c == d:
X_el[j][index] = 1
break
index += 1
j += 1
X = []
X_pure = []
vowel_i = 0
for i in range(len(word)):
if is_vowel(list(word), i, vowels):
X.append(X_el)
X_pure.append(vowel_i)
vowel_i += 1
return np.array(X), np.array(X_pure)
def decode_position_from_vowel_to_final_number(y):
res = []
for i in range(len(y)):
if y[i][0] > 0.5:
res.append(i + 1)
return res
# split content so that there is no overfitting
def split_content(content, test_and_validation_ratio, content_shuffle_vector_location, validation_ratio=0.5):
expanded_content = [el[1] if el[1] != '=' else el[0] for el in content]
# print(len(content))
unique_content = sorted(set(expanded_content))
if os.path.exists(content_shuffle_vector_location):
s = load_shuffle_vector(content_shuffle_vector_location)
else:
s = np.arange(len(unique_content))
np.random.shuffle(s)
create_and_save_shuffle_vector(content_shuffle_vector_location, s)
split_num = math.floor(len(unique_content) * test_and_validation_ratio)
validation_num = math.floor(split_num * validation_ratio)
shuffled_unique_train_content = [unique_content[i] for i in range(len(s)) if s[i] >= split_num]
shuffled_unique_train_content_set = set(shuffled_unique_train_content)
shuffled_unique_test_content = [unique_content[i] for i in range(len(s)) if split_num > s[i] >= validation_num]
shuffled_unique_test_content_set = set(shuffled_unique_test_content)
shuffled_unique_validate_content = [unique_content[i] for i in range(len(s)) if s[i] < validation_num]
shuffled_unique_validate_content_set = set(shuffled_unique_validate_content)
train_content = [content[i] for i in range(len(content)) if expanded_content[i] in shuffled_unique_train_content_set]
test_content = [content[i] for i in range(len(content)) if expanded_content[i] in shuffled_unique_test_content_set]
validate_content = [content[i] for i in range(len(content)) if expanded_content[i] in shuffled_unique_validate_content_set]
return train_content, test_content, validate_content
# split content so that there is no overfitting with out split of validation and test data
def old_split_content(content, ratio):
expanded_content = [el[1] if el[1] != '=' else el[0] for el in content]
# print(len(content))
unique_content = sorted(set(expanded_content))
s = np.arange(len(unique_content))
np.random.shuffle(s)
split_num = math.floor(len(unique_content) * ratio)
shuffled_unique_train_content = [unique_content[i] for i in range(len(s)) if s[i] >= split_num]
shuffled_unique_train_content_set = set(shuffled_unique_train_content)
shuffled_unique_validate_content = [unique_content[i] for i in range(len(s)) if s[i] < split_num]
shuffled_unique_validate_content_set = set(shuffled_unique_validate_content)
train_content = [content[i] for i in range(len(content)) if expanded_content[i] in shuffled_unique_train_content_set]
validate_content = [content[i] for i in range(len(content)) if expanded_content[i] in shuffled_unique_validate_content_set]
return train_content, validate_content
# X features that use MULTEX v3 as their encoding
def create_old_feature_dictionary(content):
additional_data = [el[2] for el in content]
possible_variants = sorted(set(additional_data))
categories = sorted(set([el[0] for el in possible_variants]))
feature_dictionary = []
for category in categories:
category_features = [1, category]
examples_per_category = [el for el in possible_variants if el[0] == category]
longest_element = max(examples_per_category, key=len)
for i in range(1, len(longest_element)):
possibilities_per_el = sorted(set([el[i] for el in examples_per_category if i < len(el)]))
category_features[0] += len(possibilities_per_el)
category_features.append(possibilities_per_el)
feature_dictionary.append(category_features)
return feature_dictionary
# X features that use MULTEX v3 as their encoding
def create_old_X_features(content, feature_dictionary):
content = content
X_other_features = []
for el in content:
X_el_other_features = []
for feature in feature_dictionary:
if el[2][0] == feature[1]:
X_el_other_features.append(1)
for i in range(2, len(feature)):
for j in range(len(feature[i])):
if i-1 < len(el[2]) and feature[i][j] == el[2][i-1]:
X_el_other_features.append(1)
else:
X_el_other_features.append(0)
else:
X_el_other_features.extend([0] * feature[0])
X_other_features.append(X_el_other_features)
return np.array(X_other_features)
def convert_to_MULTEXT_east_v4(old_features, feature_dictionary):
new_features = ['-'] * 9
new_features[:len(old_features)] = old_features
if old_features[0] == 'A':
if old_features[1] == 'f' or old_features[1] == 'o':
new_features[1] = 'g'
return new_features[:len(feature_dictionary[0]) - 1]
if old_features[0] == 'C':
return new_features[:len(feature_dictionary[1]) - 1]
if old_features[0] == 'I':
return new_features[:len(feature_dictionary[2]) - 1]
if old_features[0] == 'M':
new_features[2:6] = old_features[1:5]
new_features[1] = old_features[5]
if new_features[2] == 'm':
new_features[2] = '-'
return new_features[:len(feature_dictionary[3]) - 1]
if old_features[0] == 'N':
if len(old_features) >= 7:
new_features[5] = old_features[7]
return new_features[:len(feature_dictionary[4]) - 1]
if old_features[0] == 'P':
if new_features[8] == 'n':
new_features[8] = 'b'
return new_features[:len(feature_dictionary[5]) - 1]
if old_features[0] == 'Q':
return new_features[:len(feature_dictionary[6]) - 1]
if old_features[0] == 'R':
return new_features[:len(feature_dictionary[7]) - 1]
if old_features[0] == 'S':
if len(old_features) == 4:
new_features[1] = old_features[3]
else:
new_features[1] = '-'
return new_features[:len(feature_dictionary[8]) - 1]
if old_features[0] == 'V':
if old_features[1] == 'o' or old_features[1] == 'c':
new_features[1] = 'm'
new_features[3] = old_features[2]
new_features[2] = '-'
if old_features[2] == 'i':
new_features[3] = 'r'
if len(old_features) > 3 and old_features[3] == 'p':
new_features[3] = 'r'
elif len(old_features) > 3 and old_features[3] == 'f':
new_features[3] = 'f'
if len(old_features) >= 9:
new_features[7] = old_features[8]
else:
new_features[7] = '-'
return new_features[:len(feature_dictionary[9]) - 1]
return ''
def create_X_features(content, feature_dictionary):
content = content
X_other_features = []
for el in content:
X_el_other_features = []
converted_el = ''.join(convert_to_MULTEXT_east_v4(list(el[2]), feature_dictionary))
# converted_el = el[2]
for feature in feature_dictionary:
if converted_el[0] == feature[1]:
X_el_other_features.append(1)
for i in range(2, len(feature)):
for j in range(len(feature[i])):
if i-1 < len(converted_el) and feature[i][j] == converted_el[i-1]:
X_el_other_features.append(1)
else:
X_el_other_features.append(0)
else:
X_el_other_features.extend([0] * feature[0])
X_other_features.append(X_el_other_features)
return np.array(X_other_features)
def create_feature_dictionary():
# old: http://nl.ijs.si/ME/Vault/V3/msd/html/
# new: http://nl.ijs.si/ME/V4/msd/html/
# changes: http://nl.ijs.si/jos/msd/html-en/msd.diffs.html
return [[21,
'A',
['g', 's'],
['p', 'c', 's'],
['m', 'f', 'n'],
['s', 'd', 'p'],
['n', 'g', 'd', 'a', 'l', 'i'],
['-', 'n', 'y']],
[3, 'C', ['c', 's']],
[1, 'I'],
[21,
'M',
['l'],
['-', 'c', 'o', 's'],
['m', 'f', 'n'],
['s', 'd', 'p'],
['n', 'g', 'd', 'a', 'l', 'i'],
['-', 'n', 'y']],
[17,
'N',
['c'],
['m', 'f', 'n'],
['s', 'd', 'p'],
['n', 'g', 'd', 'a', 'l', 'i'],
['-', 'n', 'y']],
[40,
'P',
['p', 's', 'd', 'r', 'x', 'g', 'q', 'i', 'z'],
['-', '1', '2', '3'],
['-', 'm', 'f', 'n'],
['-', 's', 'd', 'p'],
['-', 'n', 'g', 'd', 'a', 'l', 'i'],
['-', 's', 'd', 'p'],
['-', 'm', 'f', 'n'],
['-', 'y', 'b']],
[1, 'Q'],
[5, 'R', ['g'], ['p', 'c', 's']],
[7, 'S', ['-', 'g', 'd', 'a', 'l', 'i']],
[24,
'V',
['m'],
['-'],
['n', 'u', 'p', 'r', 'f', 'c'],
['-', '1', '2', '3'],
['-', 's', 'p', 'd'],
['-', 'm', 'f', 'n'],
['-', 'n', 'y']]
]
def complete_feature_dict():
# old: http://nl.ijs.si/ME/Vault/V3/msd/html/
# new: http://nl.ijs.si/ME/V4/msd/html/
# changes: http://nl.ijs.si/jos/msd/html-en/msd.diffs.html
return [[27,
'A',
['-', 'g', 's', 'p'],
['-', 'p', 'c', 's'],
['-', 'm', 'f', 'n'],
['-', 's', 'd', 'p'],
['-', 'n', 'g', 'd', 'a', 'l', 'i'],
['-', 'n', 'y']],
[4, 'C', ['-', 'c', 's']],
[1, 'I'],
[28,
'M',
['-', 'd', 'r', 'l'],
['-', 'c', 'o', 'p', 's'],
['-', 'm', 'f', 'n'],
['-', 's', 'd', 'p'],
['-', 'n', 'g', 'd', 'a', 'l', 'i'],
['-', 'n', 'y']],
[22,
'N',
['-', 'c', 'p'],
['-', 'm', 'f', 'n'],
['-', 's', 'd', 'p'],
['-', 'n', 'g', 'd', 'a', 'l', 'i'],
['-', 'n', 'y']],
[41,
'P',
['-', 'p', 's', 'd', 'r', 'x', 'g', 'q', 'i', 'z'],
['-', '1', '2', '3'],
['-', 'm', 'f', 'n'],
['-', 's', 'd', 'p'],
['-', 'n', 'g', 'd', 'a', 'l', 'i'],
['-', 's', 'd', 'p'],
['-', 'm', 'f', 'n'],
['-', 'y', 'b']],
[1, 'Q'],
[8, 'R', ['-', 'g', 'r'], ['-', 'p', 'c', 's']],
[8, 'S', ['-', 'n', 'g', 'd', 'a', 'l', 'i']],
[31,
'V',
['-', 'm', 'a'],
['-', 'e', 'p', 'b'],
['-', 'n', 'u', 'p', 'r', 'f', 'c', 'm'],
['-', '1', '2', '3'],
['-', 's', 'p', 'd'],
['-', 'm', 'f', 'n'],
['-', 'n', 'y']]
]
def check_feature_letter_usage(X_other_features, feature_dictionary):
case_numbers = np.sum(X_other_features, axis=0)
arrays = [1] * 164
letters = list(decode_X_features(feature_dictionary, [arrays]))
print(sum(case_numbers))
for i in range(len(letters)):
print(letters[i] + ': ' + str(case_numbers[i]))
def dict_occurances_in_dataset_rate(content):
feature_dictionary = complete_feature_dict()
# case = 3107
# print(content[case])
# print(feature_dictionary)
# X_other_features = create_X_features([content[case]], feature_dictionary)
X_other_features = create_X_features(content, feature_dictionary)
# print(X_other_features)
# print(decode_X_features(feature_dictionary, X_other_features))
X_other_features = np.array(X_other_features)
case_numbers = np.sum(X_other_features, axis=0)
print(case_numbers)
def get_voiced_consonants():
return ['m', 'n', 'v', 'l', 'r', 'j', 'y', 'w']
def get_resonant_silent_consonants():
return ['b', 'd', 'z', 'ž', 'g']
def get_unresonant_silent_consonants():
return ['p', 't', 's', 'š', 'č', 'k', 'f', 'h', 'c']
def split_consonants(consonants):
# def voiced_consonants():
# return ['m', 'n', 'v', 'l', 'r', 'j', 'y', 'w']
#
# def resonant_silent_consonants():
# return ['b', 'd', 'z', 'ž', 'g']
#
# def unresonant_silent_consonants():
# return ['p', 't', 's', 'š', 'č', 'k', 'f', 'h', 'c']
# test = get_voiced_consonants()
voiced_consonants = get_voiced_consonants()
resonant_silent_consonants = get_resonant_silent_consonants()
unresonant_silent_consonants = get_unresonant_silent_consonants()
if len(consonants) == 0:
return [''], ['']
elif len(consonants) == 1:
return [''], consonants
else:
split_options = []
for i in range(len(consonants)-1):
if consonants[i] == '-' or consonants[i] == '_':
split_options.append([i, -1])
elif consonants[i] == consonants[i+1]:
split_options.append([i, 0])
elif consonants[i] in voiced_consonants:
if consonants[i+1] in resonant_silent_consonants or consonants[i+1] in unresonant_silent_consonants:
split_options.append([i, 2])
elif consonants[i] in resonant_silent_consonants:
if consonants[i+1] in resonant_silent_consonants:
split_options.append([i, 1])
elif consonants[i+1] in unresonant_silent_consonants:
split_options.append([i, 3])
elif consonants[i] in unresonant_silent_consonants:
if consonants[i+1] in resonant_silent_consonants:
split_options.append([i, 4])
else:
print(consonants)
print('UNRECOGNIZED LETTERS!')
if split_options == []:
return [''], consonants
else:
split = min(split_options, key=lambda x:x[1])
return consonants[:split[0]+1], consonants[split[0]+1:]
# print(consonants)
return [''], ['']
def create_syllables(word, vowels):
word_list = list(word)
consonants = []
syllables = []
for i in range(len(word_list)):
if is_vowel(word_list, i, vowels):
if syllables == []:
consonants.append(word_list[i])
syllables.append(''.join(consonants))
else:
left_consonants, right_consonants = split_consonants(consonants)
syllables[-1] += ''.join(left_consonants)
right_consonants.append(word_list[i])
syllables.append(''.join(right_consonants))
consonants = []
else:
consonants.append(word_list[i])
if len(syllables) < 1:
return word
syllables[-1] += ''.join(consonants)
return syllables
def create_syllables_dictionary(content, vowels):
dictionary = []
for el in content:
syllables = create_syllables(el[0], vowels)
for syllable in syllables:
if syllable not in dictionary:
dictionary.append(syllable)
dictionary.append('')
return sorted(dictionary)
def generate_syllable_inputs(content_shuffle_vector_location, shuffle_vector_location):
dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels = create_dict()
train_content, test_content, validate_content = split_content(content, 0.2, content_shuffle_vector_location)
feature_dictionary = create_feature_dictionary()
print('CREATING SYLLABLE DICTIONARY...')
syllable_dictionary = create_syllables_dictionary(content, vowels)
print('CREATION SUCCESSFUL!')
# Generate X and y
print('GENERATING X AND y...')
X_train, X_other_features_train, y_train = generate_syllable_X_and_y(syllable_dictionary, max_word, max_num_vowels, train_content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location + '_train.h5')
X_test, X_other_features_test, y_test = generate_syllable_X_and_y(syllable_dictionary, max_word, max_num_vowels, test_content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location + '_test.h5')
X_validate, X_other_features_validate, y_validate = generate_syllable_X_and_y(syllable_dictionary, max_word, max_num_vowels, validate_content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location + '_validate.h5')
print('GENERATION SUCCESSFUL!')
return X_train, X_other_features_train, y_train, X_test, X_other_features_test, y_test, X_validate, X_other_features_validate, y_validate
# Generate each y as an array of 11 numbers (with possible values between 0 and 1)
def generate_syllable_X_and_y(dictionary, max_word, max_num_vowels, content, vowels, accetuated_vowels, feature_dictionary, shuffle_vector_location, shuffle=True):
y = np.zeros((len(content), max_num_vowels))
X = np.zeros((len(content), max_num_vowels), dtype=int)
# X = []
print('CREATING OTHER FEATURES...')
X_other_features = create_X_features(content, feature_dictionary)
print('OTHER FEATURES CREATED!')
i = 0
for el in content:
j = 0
syllables = create_syllables(el[0], vowels)
# X_el = [''] * max_num_vowels
for syllable in syllables:
index = dictionary.index(syllable)
X[i][j] = index
# X[i][j][index] = 1
j += 1
# X.append(X_el)
j = 0
word_accetuations = []
num_vowels = 0
for c in list(el[3]):
index = 0
if is_vowel(el[3], j, vowels):
num_vowels += 1
for d in accetuated_vowels:
if c == d:
word_accetuations.append(num_vowels)
break
index += 1
j += 1
if len(word_accetuations) > 0:
y_value = 1/len(word_accetuations)
for el in word_accetuations:
# y[i][el] = y_value
y[i][el] = 1
else:
y[i][0] = 1
# y[i][generate_presentable_y(word_accetuations, list(el[3]), max_num_vowels)] = 1
i += 1
# print(len(X))
# print(X[0])
X = np.array(X)
# print(X.shape)
# print(X[0])
# print(len(X))
if shuffle:
print('SHUFFELING INPUTS...')
X, y, X_other_features = shuffle_inputs(X, y, shuffle_vector_location, X_pure=X_other_features)
print('INPUTS SHUFFELED!')
return X, X_other_features, y
# generator for inputs for tracking of data fitting
def generate_fake_epoch_syllables(orig_X, orig_X_additional, orig_y, batch_size, dictionary_size=5168):
size = orig_X.shape[0]
eye = np.eye(dictionary_size, dtype=int)
while 1:
loc = 0
while loc < size:
if loc + batch_size >= size:
# [eye[i] for i in range(size-loc)]
# gen_orig_X = eye[orig_X[loc:size]]
# gen_orig_X = [eye[i] for i in range(size-loc)]
gen_orig_X = eye[orig_X[loc:size]]
yield([gen_orig_X, orig_X_additional[loc:size]], orig_y[loc:size])
else:
gen_orig_X = eye[orig_X[loc:loc + batch_size]]
yield([gen_orig_X, orig_X_additional[loc:loc + batch_size]], orig_y[loc:loc + batch_size])
loc += batch_size