More tutorial
This commit is contained in:
parent
9455f26423
commit
658c55d280
6
.idea/vcs.xml
Normal file
6
.idea/vcs.xml
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="VcsDirectoryMappings">
|
||||||
|
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||||
|
</component>
|
||||||
|
</project>
|
61
theano_tutorial/logistic_regression.py
Normal file
61
theano_tutorial/logistic_regression.py
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
import numpy
|
||||||
|
import theano
|
||||||
|
import theano.tensor as T
|
||||||
|
rng = numpy.random
|
||||||
|
|
||||||
|
N = 400 # training sample size
|
||||||
|
feats = 784 # number of input variables
|
||||||
|
|
||||||
|
# generate a dataset: D = (input_values, target_class)
|
||||||
|
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
|
||||||
|
training_steps = 10000
|
||||||
|
|
||||||
|
# Declare Theano symbolic variables
|
||||||
|
x = T.dmatrix("x")
|
||||||
|
y = T.dvector("y")
|
||||||
|
|
||||||
|
# initialize the weight vector w randomly
|
||||||
|
#
|
||||||
|
# this and the following bias variable b
|
||||||
|
# are shared so they keep their values
|
||||||
|
# between training iterations (updates)
|
||||||
|
w = theano.shared(rng.randn(feats), name="w")
|
||||||
|
|
||||||
|
# initialize the bias term
|
||||||
|
b = theano.shared(0., name="b")
|
||||||
|
|
||||||
|
print("Initial model:")
|
||||||
|
print(w.get_value())
|
||||||
|
print(b.get_value())
|
||||||
|
|
||||||
|
# Construct Theano expression graph
|
||||||
|
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1
|
||||||
|
prediction = p_1 > 0.5 # The prediction thresholded
|
||||||
|
xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
|
||||||
|
cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
|
||||||
|
gw, gb = T.grad(cost, [w, b]) # Compute the gradient of the cost
|
||||||
|
# w.r.t weight vector w and
|
||||||
|
# bias term b
|
||||||
|
# (we shall return to this in a
|
||||||
|
# following section of this tutorial)
|
||||||
|
|
||||||
|
# Compile
|
||||||
|
train = theano.function(
|
||||||
|
inputs=[x,y],
|
||||||
|
outputs=[prediction, xent],
|
||||||
|
updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
|
||||||
|
predict = theano.function(inputs=[x], outputs=prediction)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Train
|
||||||
|
for i in range(training_steps):
|
||||||
|
pred, err = train(D[0], D[1])
|
||||||
|
|
||||||
|
print("Final model:")
|
||||||
|
print(w.get_value())
|
||||||
|
print(b.get_value())
|
||||||
|
print("target values for D:")
|
||||||
|
print(D[1])
|
||||||
|
print("prediction on D:")
|
||||||
|
print(predict(D[0]))
|
34
theano_tutorial/tutorial_conditions.py
Normal file
34
theano_tutorial/tutorial_conditions.py
Normal file
|
@ -0,0 +1,34 @@
|
||||||
|
# if: (if(smth) else)
|
||||||
|
# switch: (if(smth) elif(smth))
|
||||||
|
|
||||||
|
from theano import tensor as T
|
||||||
|
from theano.ifelse import ifelse
|
||||||
|
import theano, time, numpy
|
||||||
|
|
||||||
|
a,b = T.scalars('a', 'b')
|
||||||
|
x,y = T.matrices('x', 'y')
|
||||||
|
|
||||||
|
z_switch = T.switch(T.lt(a, b), T.mean(x), T.mean(y))
|
||||||
|
z_lazy = ifelse(T.lt(a, b), T.mean(x), T.mean(y))
|
||||||
|
|
||||||
|
f_switch = theano.function([a, b, x, y], z_switch,
|
||||||
|
mode=theano.Mode(linker='vm'))
|
||||||
|
f_lazyifelse = theano.function([a, b, x, y], z_lazy,
|
||||||
|
mode=theano.Mode(linker='vm'))
|
||||||
|
|
||||||
|
val1 = 0.
|
||||||
|
val2 = 1.
|
||||||
|
big_mat1 = numpy.ones((10000, 1000))
|
||||||
|
big_mat2 = numpy.ones((10000, 1000))
|
||||||
|
|
||||||
|
n_times = 10
|
||||||
|
|
||||||
|
tic = time.clock()
|
||||||
|
for i in range(n_times):
|
||||||
|
f_switch(val1, val2, big_mat1, big_mat2)
|
||||||
|
print('time spent evaluating both values %f sec' % (time.clock() - tic))
|
||||||
|
|
||||||
|
tic = time.clock()
|
||||||
|
for i in range(n_times):
|
||||||
|
f_lazyifelse(val1, val2, big_mat1, big_mat2)
|
||||||
|
print('time spent evaluating one value %f sec' % (time.clock() - tic))
|
94
theano_tutorial/tutorial_derivates.py
Normal file
94
theano_tutorial/tutorial_derivates.py
Normal file
|
@ -0,0 +1,94 @@
|
||||||
|
import numpy as np
|
||||||
|
import theano
|
||||||
|
import theano.tensor as T
|
||||||
|
|
||||||
|
# normal gradient
|
||||||
|
x = T.dscalar('x')
|
||||||
|
z = T.dscalar('z')
|
||||||
|
y = x ** 3 + z ** 2
|
||||||
|
gy = T.grad(y, [x, z])
|
||||||
|
|
||||||
|
f = theano.function([x, z], gy)
|
||||||
|
|
||||||
|
# print(theano.pp(f.maker.fgraph.outputs[0]))
|
||||||
|
# print(theano.pp(f.maker.fgraph.outputs[1]))
|
||||||
|
|
||||||
|
print(f(4, 8))
|
||||||
|
|
||||||
|
# logistic gradient
|
||||||
|
x = T.dmatrix('x')
|
||||||
|
l = T.sum(1 / (1 + T.exp(-x)))
|
||||||
|
gl = T.grad(l, x)
|
||||||
|
|
||||||
|
f_lg = theano.function([x], gl)
|
||||||
|
|
||||||
|
print(f_lg([[0, 1], [-1, -2]]))
|
||||||
|
|
||||||
|
# np.matrix([[1, 2], [3, 4]])
|
||||||
|
|
||||||
|
# jacobian matrix
|
||||||
|
print('jacobian matrix1')
|
||||||
|
x = T.dvector('x')
|
||||||
|
y = x ** 2
|
||||||
|
J, updates = theano.scan(lambda i, y, x : T.grad(y[i], x), sequences=T.arange(y.shape[0]), non_sequences=[y, x])
|
||||||
|
f = theano.function([x], J, updates=updates)
|
||||||
|
print(f([1, 2, 3, 4, 5]))
|
||||||
|
|
||||||
|
# already implemented jacobian matrix
|
||||||
|
# W, V = T.dmatrices('W', 'V')
|
||||||
|
J = theano.gradient.jacobian(y, x)
|
||||||
|
f2 = theano.function([x], J)
|
||||||
|
print(f2([1, 2, 3, 4, 5]))
|
||||||
|
|
||||||
|
# jacobian matrix with matrix :)
|
||||||
|
W, V = T.dmatrices('W', 'V')
|
||||||
|
x = T.dvector('x')
|
||||||
|
y = T.dot(x, W)
|
||||||
|
J = theano.gradient.jacobian(y, W)
|
||||||
|
f2 = theano.function([W, x], J)
|
||||||
|
print(f2(np.array([[1, 1], [1, 1]]), np.array([0, 1])))
|
||||||
|
|
||||||
|
JV2 = T.dot(J, V)
|
||||||
|
f2 = theano.function([W, V, x], JV2)
|
||||||
|
print(f2(np.array([[1, 1], [1, 1]]), np.array([[2, 2], [2, 2]]), np.array([0, 1])))
|
||||||
|
|
||||||
|
|
||||||
|
print('jacobian matrix2')
|
||||||
|
x = T.dvector('x')
|
||||||
|
z = T.dvector('z')
|
||||||
|
y = x ** 2 + z ** 2
|
||||||
|
J, updates = theano.scan(lambda i, y, x, z: T.grad(y[i], [x, z]), sequences=T.arange(y.shape[0]), non_sequences=[y,x,z])
|
||||||
|
f = theano.function([x, z], J, updates=updates)
|
||||||
|
test = T.arange(y.shape[0])
|
||||||
|
t_f = theano.function([x, z], test)
|
||||||
|
print(f([4, 4], [1, 1]))
|
||||||
|
print(t_f([4, 4], [1, 1]))
|
||||||
|
|
||||||
|
# hessian matrix
|
||||||
|
x = T.dvector('x')
|
||||||
|
y = x ** 3
|
||||||
|
cost = y.sum()
|
||||||
|
gy = T.grad(cost, x)
|
||||||
|
H, updates = theano.scan(lambda i, gy, x : T.grad(gy[i], x), sequences=T.arange(gy.shape[0]), non_sequences=[gy, x])
|
||||||
|
f = theano.function([x], H, updates=updates)
|
||||||
|
print(f([4, 4]))
|
||||||
|
|
||||||
|
# jacobian times vector
|
||||||
|
|
||||||
|
# R-operator
|
||||||
|
W = T.dmatrix('W')
|
||||||
|
V = T.dmatrix('V')
|
||||||
|
x = T.dvector('x')
|
||||||
|
y = T.dot(x, W)
|
||||||
|
JV = T.Rop(y, W, V)
|
||||||
|
f = theano.function([W, V, x], JV)
|
||||||
|
print(f([[1, 1], [1, 1]], [[2, 2], [2, 2]], [0,1]))
|
||||||
|
|
||||||
|
# L-operator
|
||||||
|
W = T.dmatrix('W')
|
||||||
|
v = T.dvector('v')
|
||||||
|
x = T.dvector('x')
|
||||||
|
y = T.dot(x, W)
|
||||||
|
VJ = T.Lop(y, W, v)
|
||||||
|
f = theano.function([v,x], VJ)
|
||||||
|
print(f([2, 2], [0, 1]))
|
100
theano_tutorial/tutorial_loop.py
Normal file
100
theano_tutorial/tutorial_loop.py
Normal file
|
@ -0,0 +1,100 @@
|
||||||
|
import theano
|
||||||
|
import theano.tensor as T
|
||||||
|
|
||||||
|
k = T.iscalar("k")
|
||||||
|
A = T.vector("A")
|
||||||
|
|
||||||
|
# Symbolic description of the result
|
||||||
|
result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,
|
||||||
|
outputs_info=T.ones_like(A),
|
||||||
|
non_sequences=A,
|
||||||
|
n_steps=k)
|
||||||
|
|
||||||
|
# We only care about A**k, but scan has provided us with A**1 through A**k.
|
||||||
|
# Discard the values that we don't care about. Scan is smart enough to
|
||||||
|
# notice this and not waste memory saving them.
|
||||||
|
final_result = result[-1]
|
||||||
|
|
||||||
|
# compiled function that returns A**k
|
||||||
|
power = theano.function(inputs=[A,k], outputs=final_result, updates=updates)
|
||||||
|
|
||||||
|
print(power(range(10),2))
|
||||||
|
print(power(range(10),4))
|
||||||
|
|
||||||
|
print('P2:')
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
coefficients = theano.tensor.vector("coefficients")
|
||||||
|
x = T.scalar("x")
|
||||||
|
|
||||||
|
max_coefficients_supported = 10000
|
||||||
|
|
||||||
|
# Generate the components of the polynomial
|
||||||
|
components, updates = theano.scan(fn=lambda coefficient, power, prior_result, free_variable: prior_result + (coefficient * (free_variable ** power)),
|
||||||
|
outputs_info=T.zeros(1),
|
||||||
|
sequences=[coefficients, theano.tensor.arange(max_coefficients_supported)],
|
||||||
|
non_sequences=x)
|
||||||
|
# Sum them up
|
||||||
|
polynomial = components.sum()
|
||||||
|
|
||||||
|
pol = components[-1]
|
||||||
|
|
||||||
|
# Compile a function
|
||||||
|
calculate_polynomial = theano.function(inputs=[coefficients, x], outputs=components)
|
||||||
|
|
||||||
|
# Test
|
||||||
|
test_coefficients = numpy.asarray([1, 0, 2], dtype=numpy.float32)
|
||||||
|
test_value = 3
|
||||||
|
print(calculate_polynomial(test_coefficients, test_value))
|
||||||
|
print(1.0 * (3 ** 0) + 0.0 * (3 ** 1) + 2.0 * (3 ** 2))
|
||||||
|
|
||||||
|
print('P3:')
|
||||||
|
import numpy as np
|
||||||
|
import theano
|
||||||
|
import theano.tensor as T
|
||||||
|
|
||||||
|
up_to = T.iscalar("up_to")
|
||||||
|
|
||||||
|
# define a named function, rather than using lambda
|
||||||
|
def accumulate_by_adding(arange_val, prior_result):
|
||||||
|
return prior_result + arange_val
|
||||||
|
seq = T.arange(up_to)
|
||||||
|
|
||||||
|
# An unauthorized implicit downcast from the dtype of 'seq', to that of
|
||||||
|
# 'T.as_tensor_variable(0)' which is of dtype 'int8' by default would occur
|
||||||
|
# if this instruction were to be used instead of the next one:
|
||||||
|
# outputs_info = T.as_tensor_variable(0)
|
||||||
|
|
||||||
|
outputs_info = T.as_tensor_variable(np.asarray(0, seq.dtype))
|
||||||
|
scan_result, scan_updates = theano.scan(fn=accumulate_by_adding,
|
||||||
|
outputs_info=outputs_info,
|
||||||
|
sequences=seq)
|
||||||
|
triangular_sequence = theano.function(inputs=[up_to], outputs=scan_result)
|
||||||
|
|
||||||
|
# test
|
||||||
|
some_num = 15
|
||||||
|
print(triangular_sequence(some_num))
|
||||||
|
print([n * (n + 1) // 2 for n in range(some_num)])
|
||||||
|
|
||||||
|
print('P4:')
|
||||||
|
location = T.imatrix("location")
|
||||||
|
values = T.vector("values")
|
||||||
|
output_model = T.matrix("output_model")
|
||||||
|
|
||||||
|
def set_value_at_position(a_location, a_value, output_model):
|
||||||
|
zeros = T.zeros_like(output_model)
|
||||||
|
zeros_subtensor = zeros[a_location[0], a_location[1]]
|
||||||
|
return T.set_subtensor(zeros_subtensor, a_value)
|
||||||
|
|
||||||
|
result, updates = theano.scan(fn=set_value_at_position,
|
||||||
|
outputs_info=None,
|
||||||
|
sequences=[location, values],
|
||||||
|
non_sequences=output_model)
|
||||||
|
|
||||||
|
assign_values_at_positions = theano.function(inputs=[location, values, output_model], outputs=result)
|
||||||
|
|
||||||
|
# test
|
||||||
|
test_locations = numpy.asarray([[1, 1], [2, 3]], dtype=numpy.int32)
|
||||||
|
test_values = numpy.asarray([42, 50], dtype=numpy.float32)
|
||||||
|
test_output_model = numpy.zeros((5, 5), dtype=numpy.float32)
|
||||||
|
print(assign_values_at_positions(test_locations, test_values, test_output_model))
|
Loading…
Reference in New Issue
Block a user