Added tab2xml conversion

This commit is contained in:
Luka 2018-04-28 10:52:50 +02:00
parent 1686f5cc6f
commit 524ceeb4b6
8 changed files with 137 additions and 476 deletions

View File

@ -0,0 +1,137 @@
# Words proccesed: 650250
# Word indeks: 50023
# Word number: 50023
from lxml import etree
import time
from prepare_data import *
# def xml_words_generator(xml_path):
# for event, element in etree.iterparse(xml_path, tag="LexicalEntry", encoding="UTF-8"):
# words = []
# for child in element:
# if child.tag == 'WordForm':
# msd = None
# word = None
# for wf in child:
# if 'att' in wf.attrib and wf.attrib['att'] == 'msd':
# msd = wf.attrib['val']
# elif wf.tag == 'FormRepresentation':
# for form_rep in wf:
# if form_rep.attrib['att'] == 'zapis_oblike':
# word = form_rep.attrib['val']
# #if msd is not None and word is not None:
# # pass
# #else:
# # print('NOOOOO')
# words.append([word, '', msd, word])
# yield words
#
#
# gen = xml_words_generator('data/Sloleks_v1.2_p2.xml')
word_glob_num = 0
word_limit = 1000
iter_num = 1000
word_index = 0
# iter_index = 0
# words = []
#
# lexical_entries_load_number = 0
# lexical_entries_save_number = 0
#
# # INSIDE
# # word_glob_num = 1500686
# word_glob_num = 1550705
#
# # word_limit = 1500686
# word_limit = 1550705
#
# iter_index = 31
# done_lexical_entries = 33522
data = Data('s', shuffle_all_inputs=False)
accentuated_content = data._read_content('data/new_sloleks/new_sloleks.tab')
start_timer = time.time()
print('Copy initialization complete')
with open("data/new_sloleks/final_sloleks.xml", "ab") as myfile:
# myfile2 = open('data/new_sloleks/p' + str(iter_index) + '.xml', 'ab')
for event, element in etree.iterparse('data/Sloleks_v1.2.xml', tag="LexicalEntry", encoding="UTF-8", remove_blank_text=True):
# if word_glob_num >= word_limit:
# myfile2.close()
# myfile2 = open('data/new_sloleks/p' + str(iter_index) + '.xml', 'ab')
# iter_index += 1
# print("Words proccesed: " + str(word_glob_num))
#
# print("Word indeks: " + str(word_index))
# print("Word number: " + str(len(words)))
#
# # print("lexical_entries_load_number: " + str(lexical_entries_load_number))
# # print("lexical_entries_save_number: " + str(lexical_entries_save_number))
#
# end_timer = time.time()
# print("Elapsed time: " + "{0:.2f}".format((end_timer - start_timer) / 60.0) + " minutes")
lemma = ''
accentuated_word_location = ''
accentuated_word = ''
for child in element:
if child.tag == 'Lemma':
for wf in child:
if 'att' in wf.attrib and wf.attrib['att'] == 'zapis_oblike':
lemma = wf.attrib['val']
if child.tag == 'WordForm':
msd = None
word = None
for wf in child:
if 'att' in wf.attrib and wf.attrib['att'] == 'msd':
msd = wf.attrib['val']
elif wf.tag == 'FormRepresentation':
for form_rep in wf:
if form_rep.attrib['att'] == 'zapis_oblike':
word = form_rep.attrib['val']
# if msd is not None and word is not None:
# pass
# else:
# print('NOOOOO')
word_index = (word_index - 500) % len(accentuated_content)
word_index_sp = (word_index - 1) % len(accentuated_content)
while word_index != word_index_sp:
if word == accentuated_content[word_index][0] and msd == accentuated_content[word_index][2] and \
lemma == accentuated_content[word_index][1]:
accentuated_word_location = accentuated_content[word_index][4]
accentuated_word = accentuated_content[word_index][5][:-1]
del(accentuated_content[word_index])
break
word_index = (word_index + 1) % len(accentuated_content)
if word_index == word_index_sp:
print('ERROR IN ' + word + ' : ' + lemma + ' : ' + msd)
# print('ERROR IN ' + word + ' : ' + accentuated_content[word_index][0] + ' OR ' + msd + ' : '
# + accentuated_content[word_index][2])
# words.append([word, '', msd, word])
new_element = etree.Element('feat')
new_element.attrib['att'] = 'naglasna_mesta_besede'
new_element.attrib['val'] = accentuated_word_location
wf.append(new_element)
new_element = etree.Element('feat')
new_element.attrib['att'] = 'naglašena_beseda'
new_element.attrib['val'] = accentuated_word
wf.append(new_element)
word_glob_num += 1
# word_index += 1
# print(etree.tostring(element, encoding="UTF-8"))
# myfile2.write(etree.tostring(element, encoding="UTF-8", pretty_print=True))
if word_glob_num > word_limit:
print('Proccessed ' + str(word_glob_num) + ' words')
end_timer = time.time()
print("Elapsed time: " + "{0:.2f}".format((end_timer - start_timer) / 60.0) + " minutes")
word_limit += iter_num
break
myfile.write(etree.tostring(element, encoding="UTF-8", pretty_print=True))
element.clear()

View File

@ -1,61 +0,0 @@
import numpy
import theano
import theano.tensor as T
rng = numpy.random
N = 400 # training sample size
feats = 784 # number of input variables
# generate a dataset: D = (input_values, target_class)
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
training_steps = 10000
# Declare Theano symbolic variables
x = T.dmatrix("x")
y = T.dvector("y")
# initialize the weight vector w randomly
#
# this and the following bias variable b
# are shared so they keep their values
# between training iterations (updates)
w = theano.shared(rng.randn(feats), name="w")
# initialize the bias term
b = theano.shared(0., name="b")
print("Initial model:")
print(w.get_value())
print(b.get_value())
# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1
prediction = p_1 > 0.5 # The prediction thresholded
xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
gw, gb = T.grad(cost, [w, b]) # Compute the gradient of the cost
# w.r.t weight vector w and
# bias term b
# (we shall return to this in a
# following section of this tutorial)
# Compile
train = theano.function(
inputs=[x,y],
outputs=[prediction, xent],
updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
predict = theano.function(inputs=[x], outputs=prediction)
# Train
for i in range(training_steps):
pred, err = train(D[0], D[1])
print("Final model:")
print(w.get_value())
print(b.get_value())
print("target values for D:")
print(D[1])
print("prediction on D:")
print(predict(D[0]))

View File

@ -1,82 +0,0 @@
import numpy
import theano
import theano.tensor as T
rng = numpy.random
N = 400 # training sample size
feats = 784 # number of input variables
# generate a dataset: D = (input_values, target_class)
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
training_steps = 10000
# Declare Theano symbolic variables
x = T.dmatrix("x")
y = T.dvector("y")
# initialize the weight vector w randomly
#
# this and the following bias variable b
# are shared so they keep their values
# between training iterations (updates)
w = theano.shared(rng.randn(feats), name="w")
# initialize the bias term
b = theano.shared(0., name="b")
print("Initial model:")
print(w.get_value())
print(b.get_value())
# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1
prediction = p_1 > 0.5 # The prediction thresholded
xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
gw, gb = T.grad(cost, [w, b]) # Compute the gradient of the cost
# w.r.t weight vector w and
# bias term b
# (we shall return to this in a
# following section of this tutorial)
def set_value_at_position(x, y, prediction, xent, w, b):
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1
prediction = p_1 > 0.5 # The prediction thresholded
xent = -y * T.log(p_1) - (1 - y) * T.log(1 - p_1) # Cross-entropy loss function
cost = xent.mean() + 0.01 * (w ** 2).sum() # The cost to minimize
gw, gb = T.grad(cost, [w, b])
w = w - 0.1 * gw
b = b - 0.1 * gb
return w, b
result, updates = theano.scan(fn=set_value_at_position,
outputs_info=[prediction, xent],
sequences=[x, y],
non_sequences=[w, b],
n_steps=training_steps)
calculate_scan = theano.function(inputs=[x, y], outputs=[prediction, xent], updates=updates)
# Compile
train = theano.function(
inputs=[x,y],
outputs=[prediction, xent],
updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
predict = theano.function(inputs=[x], outputs=prediction)
# Train
for i in range(training_steps):
pred, err = train(D[0], D[1])
print("Final model:")
print(w.get_value())
print(b.get_value())
print("target values for D:")
print(D[1])
print("prediction on D:")
print(predict(D[0]))

View File

@ -1,105 +0,0 @@
import numpy as np
import theano.tensor as T
from theano import function
# ALGEBRA
x = T.dmatrix('x')
y = T.dmatrix('y')
z = x + y
f = function([x, y], z)
# print(f(2, 3))
# print(numpy.allclose(f(16.3, 12.1), 28.4))
print(f([[1, 2], [3, 4]], [[10, 20], [30, 40]]))
# exercise
import theano
a = T.vector() # declare variable
b = T.vector() # declare variable
out = a ** 2 + b ** 2 + 2 * a * b # build symbolic expression
f = function([a, b], out) # compile function
print(f([1, 2], [4, 5]))
###################################################
# OTHER EXAMPLES
# logistic function
x = T.dmatrix('x')
logistic_eq = 1 / (1 + T.exp(-x))
logistic = function([x], logistic_eq)
print(logistic([[0, 1], [-1, -2]]))
# multiple things calculation
a, b = T.dmatrices('a', 'b')
diff = a - b
abs_diff = abs(diff)
diff_squared = diff**2
f = function([a, b], [diff, abs_diff, diff_squared])
print(f([[1, 1], [1, 1]], [[0, 1], [2, 3]]))
# default value
c = T.matrix('c')
c = a + b
f = function([a, theano.In(b, value=[[1, 1], [1, 1]])], c)
print(f([[1, 1], [1, 1]]))
# accumulator
state = theano.shared([[0, 0], [0, 0]])
print("accumulator")
print(state.get_value())
state = theano.shared(np.matrix('0 0; 0 0', dtype=np.int32))
print(type(np.matrix('0 0; 0 0', dtype=np.int64)))
print(type(np.matrix('0 1; 2 3', dtype=np.int64)))
inc = T.imatrix('inc')
expression = state+inc
print(type(expression))
accumulator = function([inc], state, updates=[(state, state+inc)])
accumulator(np.matrix('1 2; 3 4', dtype=np.int32))
print(state.get_value())
accumulator(np.matrix('1 1; 1 1', dtype=np.int32))
print(state.get_value())
# function copy
print("function copy")
new_state = theano.shared(np.matrix('0 0; 0 0', dtype=np.int32))
new_accumulator = accumulator.copy(swap={state: new_state})
new_accumulator(np.matrix('1 2; 3 4', dtype=np.int32))
print(new_state.get_value())
print(state.get_value())
# random numbers
# POSSIBLE THAT THIS DOES NOT WORK ON GPU
print("random numbers")
srng = T.shared_randomstreams.RandomStreams(seed=234)
rv_u = srng.uniform((2, 2))
rv_n = srng.normal((2, 2))
f = function([], rv_u)
g = function([], rv_n, no_default_updates=True) # Not updating rv_n.rng
nearly_zeros = function([], rv_u + rv_u - 2 * rv_u)
print(f())
print(f())
print(g())
print(g())
print("sharing streams between functions")
state_after_v0 = rv_u.rng.get_value().get_state()
# nearly_zeros() # this affects rv_u's generator
v1 = f()
rng = rv_u.rng.get_value(borrow=True)
rng.set_state(state_after_v0)
rv_u.rng.set_value(rng, borrow=True)
v2 = f() # v2 != v1
v3 = f() # v3 == v1
print(v1)
print(v2)
print(v3)

View File

@ -1,34 +0,0 @@
# if: (if(smth) else)
# switch: (if(smth) elif(smth))
from theano import tensor as T
from theano.ifelse import ifelse
import theano, time, numpy
a,b = T.scalars('a', 'b')
x,y = T.matrices('x', 'y')
z_switch = T.switch(T.lt(a, b), T.mean(x), T.mean(y))
z_lazy = ifelse(T.lt(a, b), T.mean(x), T.mean(y))
f_switch = theano.function([a, b, x, y], z_switch,
mode=theano.Mode(linker='vm'))
f_lazyifelse = theano.function([a, b, x, y], z_lazy,
mode=theano.Mode(linker='vm'))
val1 = 0.
val2 = 1.
big_mat1 = numpy.ones((10000, 1000))
big_mat2 = numpy.ones((10000, 1000))
n_times = 10
tic = time.clock()
for i in range(n_times):
f_switch(val1, val2, big_mat1, big_mat2)
print('time spent evaluating both values %f sec' % (time.clock() - tic))
tic = time.clock()
for i in range(n_times):
f_lazyifelse(val1, val2, big_mat1, big_mat2)
print('time spent evaluating one value %f sec' % (time.clock() - tic))

View File

@ -1,94 +0,0 @@
import numpy as np
import theano
import theano.tensor as T
# normal gradient
x = T.dscalar('x')
z = T.dscalar('z')
y = x ** 3 + z ** 2
gy = T.grad(y, [x, z])
f = theano.function([x, z], gy)
# print(theano.pp(f.maker.fgraph.outputs[0]))
# print(theano.pp(f.maker.fgraph.outputs[1]))
print(f(4, 8))
# logistic gradient
x = T.dmatrix('x')
l = T.sum(1 / (1 + T.exp(-x)))
gl = T.grad(l, x)
f_lg = theano.function([x], gl)
print(f_lg([[0, 1], [-1, -2]]))
# np.matrix([[1, 2], [3, 4]])
# jacobian matrix
print('jacobian matrix1')
x = T.dvector('x')
y = x ** 2
J, updates = theano.scan(lambda i, y, x : T.grad(y[i], x), sequences=T.arange(y.shape[0]), non_sequences=[y, x])
f = theano.function([x], J, updates=updates)
print(f([1, 2, 3, 4, 5]))
# already implemented jacobian matrix
# W, V = T.dmatrices('W', 'V')
J = theano.gradient.jacobian(y, x)
f2 = theano.function([x], J)
print(f2([1, 2, 3, 4, 5]))
# jacobian matrix with matrix :)
W, V = T.dmatrices('W', 'V')
x = T.dvector('x')
y = T.dot(x, W)
J = theano.gradient.jacobian(y, W)
f2 = theano.function([W, x], J)
print(f2(np.array([[1, 1], [1, 1]]), np.array([0, 1])))
JV2 = T.dot(J, V)
f2 = theano.function([W, V, x], JV2)
print(f2(np.array([[1, 1], [1, 1]]), np.array([[2, 2], [2, 2]]), np.array([0, 1])))
print('jacobian matrix2')
x = T.dvector('x')
z = T.dvector('z')
y = x ** 2 + z ** 2
J, updates = theano.scan(lambda i, y, x, z: T.grad(y[i], [x, z]), sequences=T.arange(y.shape[0]), non_sequences=[y,x,z])
f = theano.function([x, z], J, updates=updates)
test = T.arange(y.shape[0])
t_f = theano.function([x, z], test)
print(f([4, 4], [1, 1]))
print(t_f([4, 4], [1, 1]))
# hessian matrix
x = T.dvector('x')
y = x ** 3
cost = y.sum()
gy = T.grad(cost, x)
H, updates = theano.scan(lambda i, gy, x : T.grad(gy[i], x), sequences=T.arange(gy.shape[0]), non_sequences=[gy, x])
f = theano.function([x], H, updates=updates)
print(f([4, 4]))
# jacobian times vector
# R-operator
W = T.dmatrix('W')
V = T.dmatrix('V')
x = T.dvector('x')
y = T.dot(x, W)
JV = T.Rop(y, W, V)
f = theano.function([W, V, x], JV)
print(f([[1, 1], [1, 1]], [[2, 2], [2, 2]], [0,1]))
# L-operator
W = T.dmatrix('W')
v = T.dvector('v')
x = T.dvector('x')
y = T.dot(x, W)
VJ = T.Lop(y, W, v)
f = theano.function([v,x], VJ)
print(f([2, 2], [0, 1]))

View File

@ -1,100 +0,0 @@
import theano
import theano.tensor as T
k = T.iscalar("k")
A = T.vector("A")
# Symbolic description of the result
result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,
outputs_info=T.ones_like(A),
non_sequences=A,
n_steps=k)
# We only care about A**k, but scan has provided us with A**1 through A**k.
# Discard the values that we don't care about. Scan is smart enough to
# notice this and not waste memory saving them.
final_result = result[-1]
# compiled function that returns A**k
power = theano.function(inputs=[A,k], outputs=final_result, updates=updates)
print(power(range(10),2))
print(power(range(10),4))
print('P2:')
import numpy
coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x")
max_coefficients_supported = 10000
# Generate the components of the polynomial
components, updates = theano.scan(fn=lambda coefficient, power, prior_result, free_variable: prior_result + (coefficient * (free_variable ** power)),
outputs_info=T.zeros(1),
sequences=[coefficients, theano.tensor.arange(max_coefficients_supported)],
non_sequences=x)
# Sum them up
polynomial = components.sum()
pol = components[-1]
# Compile a function
calculate_polynomial = theano.function(inputs=[coefficients, x], outputs=components)
# Test
test_coefficients = numpy.asarray([1, 0, 2], dtype=numpy.float32)
test_value = 3
print(calculate_polynomial(test_coefficients, test_value))
print(1.0 * (3 ** 0) + 0.0 * (3 ** 1) + 2.0 * (3 ** 2))
print('P3:')
import numpy as np
import theano
import theano.tensor as T
up_to = T.iscalar("up_to")
# define a named function, rather than using lambda
def accumulate_by_adding(arange_val, prior_result):
return prior_result + arange_val
seq = T.arange(up_to)
# An unauthorized implicit downcast from the dtype of 'seq', to that of
# 'T.as_tensor_variable(0)' which is of dtype 'int8' by default would occur
# if this instruction were to be used instead of the next one:
# outputs_info = T.as_tensor_variable(0)
outputs_info = T.as_tensor_variable(np.asarray(0, seq.dtype))
scan_result, scan_updates = theano.scan(fn=accumulate_by_adding,
outputs_info=outputs_info,
sequences=seq)
triangular_sequence = theano.function(inputs=[up_to], outputs=scan_result)
# test
some_num = 15
print(triangular_sequence(some_num))
print([n * (n + 1) // 2 for n in range(some_num)])
print('P4:')
location = T.imatrix("location")
values = T.vector("values")
output_model = T.matrix("output_model")
def set_value_at_position(a_location, a_value, output_model):
zeros = T.zeros_like(output_model)
zeros_subtensor = zeros[a_location[0], a_location[1]]
return T.set_subtensor(zeros_subtensor, a_value)
result, updates = theano.scan(fn=set_value_at_position,
outputs_info=None,
sequences=[location, values],
non_sequences=output_model)
assign_values_at_positions = theano.function(inputs=[location, values, output_model], outputs=result)
# test
test_locations = numpy.asarray([[1, 1], [2, 3]], dtype=numpy.int32)
test_values = numpy.asarray([42, 50], dtype=numpy.float32)
test_output_model = numpy.zeros((5, 5), dtype=numpy.float32)
print(assign_values_at_positions(test_locations, test_values, test_output_model))