Added some runnable applications of this model
This commit is contained in:
		
							parent
							
								
									4175c45ceb
								
							
						
					
					
						commit
						048825648a
					
				
							
								
								
									
										11
									
								
								.idea/accetuation.iml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										11
									
								
								.idea/accetuation.iml
									
									
									
										generated
									
									
									
								
							@ -1,11 +0,0 @@
 | 
			
		||||
<?xml version="1.0" encoding="UTF-8"?>
 | 
			
		||||
<module type="PYTHON_MODULE" version="4">
 | 
			
		||||
  <component name="NewModuleRootManager">
 | 
			
		||||
    <content url="file://$MODULE_DIR$" />
 | 
			
		||||
    <orderEntry type="jdk" jdkName="Python 3.5.2 (~/miniconda3/bin/python)" jdkType="Python SDK" />
 | 
			
		||||
    <orderEntry type="sourceFolder" forTests="false" />
 | 
			
		||||
  </component>
 | 
			
		||||
  <component name="TestRunnerService">
 | 
			
		||||
    <option name="PROJECT_TEST_RUNNER" value="Unittests" />
 | 
			
		||||
  </component>
 | 
			
		||||
</module>
 | 
			
		||||
							
								
								
									
										9
									
								
								.idea/dictionaries/luka.xml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										9
									
								
								.idea/dictionaries/luka.xml
									
									
									
										generated
									
									
									
								
							@ -1,9 +0,0 @@
 | 
			
		||||
<component name="ProjectDictionaryState">
 | 
			
		||||
  <dictionary name="luka">
 | 
			
		||||
    <words>
 | 
			
		||||
      <w>accentuations</w>
 | 
			
		||||
      <w>nonresonant</w>
 | 
			
		||||
      <w>overfitting</w>
 | 
			
		||||
    </words>
 | 
			
		||||
  </dictionary>
 | 
			
		||||
</component>
 | 
			
		||||
							
								
								
									
										6
									
								
								.idea/encodings.xml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										6
									
								
								.idea/encodings.xml
									
									
									
										generated
									
									
									
								
							@ -1,6 +0,0 @@
 | 
			
		||||
<?xml version="1.0" encoding="UTF-8"?>
 | 
			
		||||
<project version="4">
 | 
			
		||||
  <component name="Encoding">
 | 
			
		||||
    <file url="PROJECT" charset="UTF-8" />
 | 
			
		||||
  </component>
 | 
			
		||||
</project>
 | 
			
		||||
							
								
								
									
										22
									
								
								.idea/misc.xml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										22
									
								
								.idea/misc.xml
									
									
									
										generated
									
									
									
								
							@ -1,22 +0,0 @@
 | 
			
		||||
<?xml version="1.0" encoding="UTF-8"?>
 | 
			
		||||
<project version="4">
 | 
			
		||||
  <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.5.2 (~/miniconda3/bin/python)" project-jdk-type="Python SDK" />
 | 
			
		||||
  <component name="SvnConfiguration">
 | 
			
		||||
    <configuration>$USER_HOME$/.subversion</configuration>
 | 
			
		||||
  </component>
 | 
			
		||||
  <component name="masterDetails">
 | 
			
		||||
    <states>
 | 
			
		||||
      <state key="ScopeChooserConfigurable.UI">
 | 
			
		||||
        <settings>
 | 
			
		||||
          <splitter-proportions>
 | 
			
		||||
            <option name="proportions">
 | 
			
		||||
              <list>
 | 
			
		||||
                <option value="0.2" />
 | 
			
		||||
              </list>
 | 
			
		||||
            </option>
 | 
			
		||||
          </splitter-proportions>
 | 
			
		||||
        </settings>
 | 
			
		||||
      </state>
 | 
			
		||||
    </states>
 | 
			
		||||
  </component>
 | 
			
		||||
</project>
 | 
			
		||||
							
								
								
									
										8
									
								
								.idea/modules.xml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										8
									
								
								.idea/modules.xml
									
									
									
										generated
									
									
									
								
							@ -1,8 +0,0 @@
 | 
			
		||||
<?xml version="1.0" encoding="UTF-8"?>
 | 
			
		||||
<project version="4">
 | 
			
		||||
  <component name="ProjectModuleManager">
 | 
			
		||||
    <modules>
 | 
			
		||||
      <module fileurl="file://$PROJECT_DIR$/.idea/accetuation.iml" filepath="$PROJECT_DIR$/.idea/accetuation.iml" />
 | 
			
		||||
    </modules>
 | 
			
		||||
  </component>
 | 
			
		||||
</project>
 | 
			
		||||
							
								
								
									
										6
									
								
								.idea/vcs.xml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										6
									
								
								.idea/vcs.xml
									
									
									
										generated
									
									
									
								
							@ -1,6 +0,0 @@
 | 
			
		||||
<?xml version="1.0" encoding="UTF-8"?>
 | 
			
		||||
<project version="4">
 | 
			
		||||
  <component name="VcsDirectoryMappings">
 | 
			
		||||
    <mapping directory="$PROJECT_DIR$" vcs="Git" />
 | 
			
		||||
  </component>
 | 
			
		||||
</project>
 | 
			
		||||
							
								
								
									
										1326
									
								
								.idea/workspace.xml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										1326
									
								
								.idea/workspace.xml
									
									
									
										generated
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										71
									
								
								accentuate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								accentuate.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,71 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
from __future__ import unicode_literals
 | 
			
		||||
 | 
			
		||||
import pickle
 | 
			
		||||
import numpy as np
 | 
			
		||||
from keras.models import load_model
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
from prepare_data import *
 | 
			
		||||
 | 
			
		||||
# obtain data from parameters
 | 
			
		||||
if len(sys.argv) < 3:
 | 
			
		||||
    print('Please provide arguments for this script to work. First argument should be location of file with unaccented words and morphological data '
 | 
			
		||||
          'and second the name of file where you would like to save file to. Example: python accentuate.py \'test_data/unaccented_dictionary\' '
 | 
			
		||||
          '\'test_data/accented_data\'')
 | 
			
		||||
    raise Exception
 | 
			
		||||
read_location = sys.argv[1]
 | 
			
		||||
write_location = sys.argv[2]
 | 
			
		||||
 | 
			
		||||
# get environment variables necessary for calculations
 | 
			
		||||
pickle_input = open('preprocessed_data/environment.pkl', 'rb')
 | 
			
		||||
environment = pickle.load(pickle_input)
 | 
			
		||||
dictionary = environment['dictionary']
 | 
			
		||||
max_word = environment['max_word']
 | 
			
		||||
max_num_vowels = environment['max_num_vowels']
 | 
			
		||||
vowels = environment['vowels']
 | 
			
		||||
accented_vowels = environment['accented_vowels']
 | 
			
		||||
feature_dictionary = environment['feature_dictionary']
 | 
			
		||||
syllable_dictionary = environment['syllable_dictionary']
 | 
			
		||||
 | 
			
		||||
# load models
 | 
			
		||||
data = Data('l', shuffle_all_inputs=False)
 | 
			
		||||
letter_location_model, syllable_location_model, syllabled_letters_location_model = data.load_location_models(
 | 
			
		||||
    'cnn/word_accetuation/cnn_dictionary/v5_3/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllables/v3_3/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllabled_letters/v3_3/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
letter_location_co_model, syllable_location_co_model, syllabled_letters_location_co_model = data.load_location_models(
 | 
			
		||||
    'cnn/word_accetuation/cnn_dictionary/v5_2/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllables/v3_2/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllabled_letters/v3_2/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
letter_type_model, syllable_type_model, syllabled_letter_type_model = data.load_type_models(
 | 
			
		||||
    'cnn/accent_classification/letters/v3_1/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllables/v2_1/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllabled_letters/v2_1/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
letter_type_co_model, syllable_type_co_model, syllabled_letter_type_co_model = data.load_type_models(
 | 
			
		||||
    'cnn/accent_classification/letters/v3_0/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllables/v2_0/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllabled_letters/v2_0/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
# read from data
 | 
			
		||||
content = data._read_content(read_location)
 | 
			
		||||
 | 
			
		||||
# format data for accentuate_word function it has to be like [['besedišči', '', 'Ncnpi', 'besedišči'], ]
 | 
			
		||||
content = [[el[0], '', el[1][:-1], el[0]] for el in content[:-1]]
 | 
			
		||||
 | 
			
		||||
# use environment variables and models to accentuate words
 | 
			
		||||
data = Data('l', shuffle_all_inputs=False)
 | 
			
		||||
location_accented_words, accented_words = data.accentuate_word(content, letter_location_model, syllable_location_model, syllabled_letters_location_model,
 | 
			
		||||
                        letter_location_co_model, syllable_location_co_model, syllabled_letters_location_co_model,
 | 
			
		||||
                        letter_type_model, syllable_type_model, syllabled_letter_type_model,
 | 
			
		||||
                        letter_type_co_model, syllable_type_co_model, syllabled_letter_type_co_model,
 | 
			
		||||
                        dictionary, max_word, max_num_vowels, vowels, accented_vowels, feature_dictionary, syllable_dictionary)
 | 
			
		||||
 | 
			
		||||
# save accentuated words
 | 
			
		||||
with open(write_location, 'w') as f:
 | 
			
		||||
    for i in range(len(location_accented_words)):
 | 
			
		||||
        f.write(location_accented_words[i] + '  ' + accented_words[i] + '\n')
 | 
			
		||||
    f.write('\n')
 | 
			
		||||
							
								
								
									
										79
									
								
								accentuate_connected_text.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								accentuate_connected_text.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,79 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
from __future__ import unicode_literals
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
sys.path.insert(0, '../../../')
 | 
			
		||||
from prepare_data import *
 | 
			
		||||
 | 
			
		||||
import pickle
 | 
			
		||||
 | 
			
		||||
# from keras import backend as Input
 | 
			
		||||
np.random.seed(7)
 | 
			
		||||
 | 
			
		||||
# obtain data from parameters
 | 
			
		||||
if len(sys.argv) < 3:
 | 
			
		||||
    print('Please provide arguments for this script to work. First argument should be location of file with unaccented words and morphological data, '
 | 
			
		||||
          'second the name of file where you would like to save results to and third location of ReLDI tagger. Example: python accentuate.py '
 | 
			
		||||
          '\'test_data/original_connected_text\' \'test_data/accented_connected_text\' \'../reldi_tagger\'')
 | 
			
		||||
    raise Exception
 | 
			
		||||
read_location = sys.argv[1]
 | 
			
		||||
write_location = sys.argv[2]
 | 
			
		||||
reldi_location = sys.argv[3]
 | 
			
		||||
 | 
			
		||||
# get environment variables necessary for calculations
 | 
			
		||||
pickle_input = open('preprocessed_data/environment.pkl', 'rb')
 | 
			
		||||
environment = pickle.load(pickle_input)
 | 
			
		||||
dictionary = environment['dictionary']
 | 
			
		||||
max_word = environment['max_word']
 | 
			
		||||
max_num_vowels = environment['max_num_vowels']
 | 
			
		||||
vowels = environment['vowels']
 | 
			
		||||
accented_vowels = environment['accented_vowels']
 | 
			
		||||
feature_dictionary = environment['feature_dictionary']
 | 
			
		||||
syllable_dictionary = environment['syllable_dictionary']
 | 
			
		||||
 | 
			
		||||
# get models
 | 
			
		||||
data = Data('l', shuffle_all_inputs=False)
 | 
			
		||||
letter_location_model, syllable_location_model, syllabled_letters_location_model = data.load_location_models(
 | 
			
		||||
    'cnn/word_accetuation/cnn_dictionary/v5_3/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllables/v3_3/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllabled_letters/v3_3/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
letter_location_co_model, syllable_location_co_model, syllabled_letters_location_co_model = data.load_location_models(
 | 
			
		||||
    'cnn/word_accetuation/cnn_dictionary/v5_2/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllables/v3_2/20_final_epoch.h5',
 | 
			
		||||
    'cnn/word_accetuation/syllabled_letters/v3_2/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
letter_type_model, syllable_type_model, syllabled_letter_type_model = data.load_type_models(
 | 
			
		||||
    'cnn/accent_classification/letters/v3_1/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllables/v2_1/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllabled_letters/v2_1/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
letter_type_co_model, syllable_type_co_model, syllabled_letter_type_co_model = data.load_type_models(
 | 
			
		||||
    'cnn/accent_classification/letters/v3_0/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllables/v2_0/20_final_epoch.h5',
 | 
			
		||||
    'cnn/accent_classification/syllabled_letters/v2_0/20_final_epoch.h5')
 | 
			
		||||
 | 
			
		||||
# get word tags
 | 
			
		||||
tagged_words, original_text = data.tag_words(reldi_location, read_location)
 | 
			
		||||
 | 
			
		||||
# find accentuation locations
 | 
			
		||||
predictions = data.get_ensemble_location_predictions(tagged_words, letter_location_model, syllable_location_model, syllabled_letters_location_model,
 | 
			
		||||
                                                     letter_location_co_model, syllable_location_co_model, syllabled_letters_location_co_model,
 | 
			
		||||
                                                     dictionary, max_word, max_num_vowels, vowels, accented_vowels, feature_dictionary,
 | 
			
		||||
                                                     syllable_dictionary)
 | 
			
		||||
 | 
			
		||||
location_accented_text = data.create_connected_text_locations(tagged_words, original_text, predictions, vowels)
 | 
			
		||||
 | 
			
		||||
# accentuate text
 | 
			
		||||
location_y = np.around(predictions)
 | 
			
		||||
type_predictions = data.get_ensemble_type_predictions(tagged_words, location_y, letter_type_model, syllable_type_model, syllabled_letter_type_model,
 | 
			
		||||
                                                      letter_type_co_model, syllable_type_co_model, syllabled_letter_type_co_model,
 | 
			
		||||
                                                      dictionary, max_word, max_num_vowels, vowels, accented_vowels, feature_dictionary,
 | 
			
		||||
                                                      syllable_dictionary)
 | 
			
		||||
 | 
			
		||||
accented_text = data.create_connected_text_accented(tagged_words, original_text, type_predictions, location_y, vowels, accented_vowels)
 | 
			
		||||
 | 
			
		||||
# save accentuated text
 | 
			
		||||
with open(write_location, 'w') as f:
 | 
			
		||||
    f.write(accented_text)
 | 
			
		||||
							
								
								
									
										74
									
								
								learn_location_weights.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								learn_location_weights.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,74 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
from __future__ import unicode_literals
 | 
			
		||||
# text in Western (Windows 1252)
 | 
			
		||||
 | 
			
		||||
import pickle
 | 
			
		||||
import numpy as np
 | 
			
		||||
np.random.seed(7)
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
from prepare_data import *
 | 
			
		||||
 | 
			
		||||
# preprocess data
 | 
			
		||||
# data = Data('l', allow_shuffle_vector_generation=True, save_generated_data=False, shuffle_all_inputs=True)
 | 
			
		||||
data = Data('l', save_generated_data=False, shuffle_all_inputs=True)
 | 
			
		||||
data.generate_data('../../internal_representations/inputs/letters_word_accentuation_train',
 | 
			
		||||
                   '../../internal_representations/inputs/letters_word_accentuation_test',
 | 
			
		||||
                   '../../internal_representations/inputs/letters_word_accentuation_validate',
 | 
			
		||||
                   content_location='../accetuation/data/',
 | 
			
		||||
                   content_name='SlovarIJS_BESEDE_utf8.lex',
 | 
			
		||||
                   inputs_location='../accetuation/cnn/internal_representations/inputs/',
 | 
			
		||||
                   content_shuffle_vector='content_shuffle_vector',
 | 
			
		||||
                   shuffle_vector='shuffle_vector')
 | 
			
		||||
 | 
			
		||||
# combine all data (if it is unwanted comment code below)
 | 
			
		||||
data.x_train = np.concatenate((data.x_train, data.x_test, data.x_validate), axis=0)
 | 
			
		||||
data.x_other_features_train = np.concatenate((data.x_other_features_train, data.x_other_features_test, data.x_other_features_validate), axis=0)
 | 
			
		||||
data.y_train = np.concatenate((data.y_train, data.y_test, data.y_validate), axis=0)
 | 
			
		||||
 | 
			
		||||
# build neural network architecture
 | 
			
		||||
nn_output_dim = 10
 | 
			
		||||
batch_size = 16
 | 
			
		||||
actual_epoch = 20
 | 
			
		||||
num_fake_epoch = 20
 | 
			
		||||
 | 
			
		||||
conv_input_shape=(23, 36)
 | 
			
		||||
othr_input = (140, )
 | 
			
		||||
 | 
			
		||||
conv_input = Input(shape=conv_input_shape, name='conv_input')
 | 
			
		||||
x_conv = Conv1D(115, (3), padding='same', activation='relu')(conv_input)
 | 
			
		||||
x_conv = Conv1D(46, (3), padding='same', activation='relu')(x_conv)
 | 
			
		||||
x_conv = MaxPooling1D(pool_size=2)(x_conv)
 | 
			
		||||
x_conv = Flatten()(x_conv)
 | 
			
		||||
 | 
			
		||||
othr_input = Input(shape=othr_input, name='othr_input')
 | 
			
		||||
 | 
			
		||||
x = concatenate([x_conv, othr_input])
 | 
			
		||||
x = Dense(256, activation='relu')(x)
 | 
			
		||||
x = Dropout(0.3)(x)
 | 
			
		||||
x = Dense(256, activation='relu')(x)
 | 
			
		||||
x = Dropout(0.3)(x)
 | 
			
		||||
x = Dense(256, activation='relu')(x)
 | 
			
		||||
x = Dropout(0.3)(x)
 | 
			
		||||
x = Dense(nn_output_dim, activation='sigmoid')(x)
 | 
			
		||||
 | 
			
		||||
model = Model(inputs=[conv_input, othr_input], outputs=x)
 | 
			
		||||
opt = optimizers.Adam(lr=1E-3, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
 | 
			
		||||
model.compile(loss='mean_squared_error', optimizer=opt, metrics=[actual_accuracy,])
 | 
			
		||||
# model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# start learning
 | 
			
		||||
history = model.fit_generator(data.generator('train', batch_size, content_name='SlovarIJS_BESEDE_utf8.lex', content_location='../accetuation/data/'),
 | 
			
		||||
                              data.x_train.shape[0]/(batch_size * num_fake_epoch),
 | 
			
		||||
                              epochs=actual_epoch*num_fake_epoch,
 | 
			
		||||
                              validation_data=data.generator('test', batch_size),
 | 
			
		||||
                              validation_steps=data.x_test.shape[0]/(batch_size * num_fake_epoch))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# save generated data
 | 
			
		||||
name = 'test_data/20_epoch'
 | 
			
		||||
model.save(name + '.h5')
 | 
			
		||||
output = open(name + '_history.pkl', 'wb')
 | 
			
		||||
pickle.dump(history.history, output)
 | 
			
		||||
output.close()
 | 
			
		||||
@ -7,6 +7,7 @@ import h5py
 | 
			
		||||
import math
 | 
			
		||||
import keras.backend as K
 | 
			
		||||
import os.path
 | 
			
		||||
from os import remove
 | 
			
		||||
import codecs
 | 
			
		||||
 | 
			
		||||
from copy import copy
 | 
			
		||||
@ -666,7 +667,7 @@ class Data:
 | 
			
		||||
                    loc += batch_size
 | 
			
		||||
 | 
			
		||||
    # generator for inputs for tracking of data fitting
 | 
			
		||||
    def _syllable_generator(self, orig_x, orig_x_additional, orig_y, batch_size, translator, accented_vowels, oversampling):
 | 
			
		||||
    def _syllable_generator(self, orig_x, orig_x_additional, orig_y, batch_size, translator, accented_vowels, oversampling=np.ones(13)):
 | 
			
		||||
        size = orig_x.shape[0]
 | 
			
		||||
        while 1:
 | 
			
		||||
            loc = 0
 | 
			
		||||
@ -1655,6 +1656,95 @@ class Data:
 | 
			
		||||
 | 
			
		||||
        return location_accented_words, accented_words
 | 
			
		||||
 | 
			
		||||
    def tag_words(self, reldi_location, original_location):
 | 
			
		||||
        # generates text with every word in new line
 | 
			
		||||
        with open(original_location) as f:
 | 
			
		||||
            original_text = f.readlines()
 | 
			
		||||
        original_text = ''.join(original_text)
 | 
			
		||||
        # print(original_text)
 | 
			
		||||
        text_with_whitespaces = original_text.replace(',', ' ,').replace('.', ' .').replace('\n', ' ').replace("\"", " \" ").replace(":",
 | 
			
		||||
                                                                                                                                     " :").replace(
 | 
			
		||||
            "ć", "č").replace('–', '-')
 | 
			
		||||
        # print('-------------------------------------------------')
 | 
			
		||||
        text_with_whitespaces = '\n'.join(text_with_whitespaces.split())
 | 
			
		||||
        text_with_whitespaces += '\n\n'
 | 
			
		||||
        # print(text_with_whitespaces)
 | 
			
		||||
        with open('.words_with_whitespaces', "w") as text_file:
 | 
			
		||||
            text_file.write(text_with_whitespaces)
 | 
			
		||||
 | 
			
		||||
        # generates text with PoS tags
 | 
			
		||||
        import subprocess
 | 
			
		||||
 | 
			
		||||
        myinput = open('.words_with_whitespaces', 'r')
 | 
			
		||||
        myoutput = open('.word_tags', 'w')
 | 
			
		||||
        # print(myinput.readlines())
 | 
			
		||||
        python3_command = reldi_location + "/tagger.py sl"  # launch your python2 script using bash
 | 
			
		||||
 | 
			
		||||
        process = subprocess.run(python3_command.split(), stdin=myinput, stdout=myoutput)
 | 
			
		||||
 | 
			
		||||
        # generates interesting words
 | 
			
		||||
        pointless_words = ['.', ',', '\"', ':', '-']
 | 
			
		||||
        with open('.word_tags', "r") as text_file:
 | 
			
		||||
            tagged_input_words = []
 | 
			
		||||
            for x in text_file.readlines()[:-1]:
 | 
			
		||||
                splited_line = x[:-1].split('\t')
 | 
			
		||||
                if splited_line[0] not in pointless_words and not any(char.isdigit() for char in splited_line[0]):
 | 
			
		||||
                    tagged_input_words.append([splited_line[0].lower(), '', splited_line[1], splited_line[0].lower()])
 | 
			
		||||
 | 
			
		||||
        remove(".words_with_whitespaces")
 | 
			
		||||
        remove(".word_tags")
 | 
			
		||||
        return tagged_input_words, original_text
 | 
			
		||||
 | 
			
		||||
    def create_connected_text_locations(self, tagged_input_words, original_text, predictions, vowels):
 | 
			
		||||
        if 'A' not in vowels:
 | 
			
		||||
            vowels.extend(['A', 'E', 'I', 'O', 'U'])
 | 
			
		||||
        accented_words = [self.assign_location_stress(tagged_input_words[i][0][::-1], self.decode_y(predictions[i]), vowels)[::-1] for i in
 | 
			
		||||
                          range(len(tagged_input_words))]
 | 
			
		||||
 | 
			
		||||
        # print(accented_words[:20])
 | 
			
		||||
        # print(tagged_input_words[:20])
 | 
			
		||||
 | 
			
		||||
        words_and_accetuation_loc = [[tagged_input_words[i][0], self.decode_y(predictions[i])] for i in range(len(tagged_input_words))]
 | 
			
		||||
 | 
			
		||||
        original_text_list = list(original_text)
 | 
			
		||||
        original_text_lowercase = original_text.lower()
 | 
			
		||||
        end_pos = 0
 | 
			
		||||
        for word in words_and_accetuation_loc:
 | 
			
		||||
            posit = original_text_lowercase.find(word[0], end_pos)
 | 
			
		||||
            if posit != -1:
 | 
			
		||||
                start_pos = posit
 | 
			
		||||
                end_pos = start_pos + len(word[0])
 | 
			
		||||
 | 
			
		||||
            original_text_list[start_pos:end_pos] = list(
 | 
			
		||||
                self.assign_location_stress(''.join(original_text_list[start_pos:end_pos][::-1]), word[1], vowels)[::-1])
 | 
			
		||||
 | 
			
		||||
        return ''.join(original_text_list)
 | 
			
		||||
 | 
			
		||||
    def create_connected_text_accented(self, tagged_input_words, original_text, type_predictions, location_y, vowels, accented_vowels):
 | 
			
		||||
 | 
			
		||||
        input_words = [el[0] for el in tagged_input_words]
 | 
			
		||||
        words = self.assign_stress_types(type_predictions, input_words, location_y, vowels, accented_vowels)
 | 
			
		||||
 | 
			
		||||
        # print(original_text)
 | 
			
		||||
 | 
			
		||||
        original_text_list = list(original_text)
 | 
			
		||||
        original_text_lowercase = original_text.lower()
 | 
			
		||||
        end_pos = 0
 | 
			
		||||
        for i in range(len(words)):
 | 
			
		||||
            posit = original_text_lowercase.find(input_words[i], end_pos)
 | 
			
		||||
            if posit != -1:
 | 
			
		||||
                start_pos = posit
 | 
			
		||||
                end_pos = start_pos + len(words[i])
 | 
			
		||||
 | 
			
		||||
                orig_word = original_text_list[start_pos:end_pos]
 | 
			
		||||
                new_word = list(words[i])
 | 
			
		||||
                for j in range(len(orig_word)):
 | 
			
		||||
                    if orig_word[j].isupper():
 | 
			
		||||
                        new_word[j] = new_word[j].upper()
 | 
			
		||||
 | 
			
		||||
                original_text_list[start_pos:end_pos] = new_word
 | 
			
		||||
 | 
			
		||||
        return ''.join(original_text_list)
 | 
			
		||||
# def count_vowels(content, vowels):
 | 
			
		||||
#     num_all_vowels = 0
 | 
			
		||||
#     for el in content:
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								preprocessed_data/environment.pkl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								preprocessed_data/environment.pkl
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										1
									
								
								test_data/accented_connected_text
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								test_data/accented_connected_text
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1 @@
 | 
			
		||||
Izbrúhi na sóncu só žé vëčkrat pokazáli zóbe nášim satelítom, poslédično nášim mobílnim telefónom, navigáciji, celo eléktričnemu omréžju. Á vesóljskega vreména šë në morémo napovédati – kakó bî ga láhko, se tá téden na Blédu pogovárja okóli 70 znánstvenikov Evrópske vesóljske agéncije, ki jé sebój pripeljála svôjo näjvéčjo ikóno, británca Mátta Taylorja.
 | 
			
		||||
							
								
								
									
										6
									
								
								test_data/accented_data
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								test_data/accented_data
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,6 @@
 | 
			
		||||
absolutístični  absolutístični
 | 
			
		||||
spoštljívejše  spoštljívejše
 | 
			
		||||
tresóče  tresóče
 | 
			
		||||
razneséna  raznesěna
 | 
			
		||||
žvížgih  žvížgih
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										1
									
								
								test_data/original_connected_text
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								test_data/original_connected_text
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1 @@
 | 
			
		||||
Izbruhi na soncu so že večkrat pokazali zobe našim satelitom, posledično našim mobilnim telefonom, navigaciji, celo električnemu omrežju. A vesoljskega vremena še ne moremo napovedati – kako bi ga lahko, se ta teden na Bledu pogovarja okoli 70 znanstvenikov Evropske vesoljske agencije, ki je seboj pripeljala svojo največjo ikono, britanca Matta Taylorja.
 | 
			
		||||
							
								
								
									
										6
									
								
								test_data/unaccented_dictionary
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								test_data/unaccented_dictionary
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,6 @@
 | 
			
		||||
absolutistični	Afpmsay-n
 | 
			
		||||
spoštljivejše	Afcfsg
 | 
			
		||||
tresoče	Afpfsg
 | 
			
		||||
raznesena	Vmp--sfp
 | 
			
		||||
žvižgih	Ncmdl
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user