106 lines
2.7 KiB
Python
106 lines
2.7 KiB
Python
|
import numpy as np
|
||
|
import theano.tensor as T
|
||
|
from theano import function
|
||
|
|
||
|
# ALGEBRA
|
||
|
x = T.dmatrix('x')
|
||
|
y = T.dmatrix('y')
|
||
|
z = x + y
|
||
|
f = function([x, y], z)
|
||
|
|
||
|
# print(f(2, 3))
|
||
|
# print(numpy.allclose(f(16.3, 12.1), 28.4))
|
||
|
print(f([[1, 2], [3, 4]], [[10, 20], [30, 40]]))
|
||
|
|
||
|
# exercise
|
||
|
import theano
|
||
|
a = T.vector() # declare variable
|
||
|
b = T.vector() # declare variable
|
||
|
out = a ** 2 + b ** 2 + 2 * a * b # build symbolic expression
|
||
|
f = function([a, b], out) # compile function
|
||
|
print(f([1, 2], [4, 5]))
|
||
|
|
||
|
###################################################
|
||
|
# OTHER EXAMPLES
|
||
|
|
||
|
# logistic function
|
||
|
x = T.dmatrix('x')
|
||
|
logistic_eq = 1 / (1 + T.exp(-x))
|
||
|
logistic = function([x], logistic_eq)
|
||
|
print(logistic([[0, 1], [-1, -2]]))
|
||
|
|
||
|
|
||
|
# multiple things calculation
|
||
|
a, b = T.dmatrices('a', 'b')
|
||
|
diff = a - b
|
||
|
abs_diff = abs(diff)
|
||
|
diff_squared = diff**2
|
||
|
f = function([a, b], [diff, abs_diff, diff_squared])
|
||
|
print(f([[1, 1], [1, 1]], [[0, 1], [2, 3]]))
|
||
|
|
||
|
|
||
|
# default value
|
||
|
c = T.matrix('c')
|
||
|
c = a + b
|
||
|
f = function([a, theano.In(b, value=[[1, 1], [1, 1]])], c)
|
||
|
print(f([[1, 1], [1, 1]]))
|
||
|
|
||
|
|
||
|
# accumulator
|
||
|
state = theano.shared([[0, 0], [0, 0]])
|
||
|
print("accumulator")
|
||
|
print(state.get_value())
|
||
|
|
||
|
|
||
|
state = theano.shared(np.matrix('0 0; 0 0', dtype=np.int32))
|
||
|
print(type(np.matrix('0 0; 0 0', dtype=np.int64)))
|
||
|
print(type(np.matrix('0 1; 2 3', dtype=np.int64)))
|
||
|
inc = T.imatrix('inc')
|
||
|
expression = state+inc
|
||
|
print(type(expression))
|
||
|
accumulator = function([inc], state, updates=[(state, state+inc)])
|
||
|
|
||
|
|
||
|
accumulator(np.matrix('1 2; 3 4', dtype=np.int32))
|
||
|
print(state.get_value())
|
||
|
accumulator(np.matrix('1 1; 1 1', dtype=np.int32))
|
||
|
print(state.get_value())
|
||
|
|
||
|
# function copy
|
||
|
print("function copy")
|
||
|
new_state = theano.shared(np.matrix('0 0; 0 0', dtype=np.int32))
|
||
|
new_accumulator = accumulator.copy(swap={state: new_state})
|
||
|
new_accumulator(np.matrix('1 2; 3 4', dtype=np.int32))
|
||
|
print(new_state.get_value())
|
||
|
print(state.get_value())
|
||
|
|
||
|
# random numbers
|
||
|
# POSSIBLE THAT THIS DOES NOT WORK ON GPU
|
||
|
print("random numbers")
|
||
|
srng = T.shared_randomstreams.RandomStreams(seed=234)
|
||
|
rv_u = srng.uniform((2, 2))
|
||
|
rv_n = srng.normal((2, 2))
|
||
|
f = function([], rv_u)
|
||
|
g = function([], rv_n, no_default_updates=True) # Not updating rv_n.rng
|
||
|
nearly_zeros = function([], rv_u + rv_u - 2 * rv_u)
|
||
|
|
||
|
print(f())
|
||
|
print(f())
|
||
|
|
||
|
print(g())
|
||
|
print(g())
|
||
|
|
||
|
print("sharing streams between functions")
|
||
|
state_after_v0 = rv_u.rng.get_value().get_state()
|
||
|
# nearly_zeros() # this affects rv_u's generator
|
||
|
v1 = f()
|
||
|
rng = rv_u.rng.get_value(borrow=True)
|
||
|
rng.set_state(state_after_v0)
|
||
|
rv_u.rng.set_value(rng, borrow=True)
|
||
|
v2 = f() # v2 != v1
|
||
|
v3 = f() # v3 == v1
|
||
|
|
||
|
print(v1)
|
||
|
print(v2)
|
||
|
print(v3)
|