Added translataion fixes + punctuation in export fix

This commit is contained in:
Luka 2019-03-19 14:06:39 +01:00
parent 39624fa4f2
commit 10666b4453
19 changed files with 586 additions and 421 deletions

View File

@ -1744,7 +1744,7 @@ public class XML_processing {
// if we're calculating values for letters, omit words that are shorter than string length
if (filter.getNgramValue() == 0) {
sentence.removeIf(w -> (filter.getCalculateFor() == CalculateFor.WORD && w.getWord(filter.getWordParts()).length() < filter.getStringLength())
sentence.removeIf(w -> ((filter.getCalculateFor() == CalculateFor.WORD || filter.getCalculateFor() == CalculateFor.LOWERCASE_WORD) && w.getWord(filter.getWordParts()).length() < filter.getStringLength())
|| (filter.getCalculateFor() == CalculateFor.LEMMA && w.getLemma(filter.getWordParts()).length() < filter.getStringLength()));
}
}
@ -1766,7 +1766,7 @@ public class XML_processing {
public static Word createWord(String word, String lemma, String msd, String normalizedWord, Filter f){
List<String> wString = new ArrayList<>();
if (f.getWordParts().contains(CalculateFor.WORD))
if (f.getWordParts().contains(CalculateFor.WORD) || f.getWordParts().contains(CalculateFor.LOWERCASE_WORD))
wString.add(word);
if (f.getWordParts().contains(CalculateFor.LEMMA))
wString.add(lemma);

View File

@ -222,6 +222,12 @@ public class Ngrams {
.map(w -> w.getLemma(wordParts))
.collect(Collectors.toList()));
return StringUtils.join(candidate, " ");
case LOWERCASE_WORD:
candidate.addAll(ngramCandidate
.stream()
.map(w -> w.getWord(wordParts).toLowerCase())
.collect(Collectors.toList()));
return StringUtils.join(candidate, " ");
case WORD:
candidate.addAll(ngramCandidate
.stream()
@ -298,6 +304,10 @@ public class Ngrams {
continue;
}
if(stats.getFilter().getCalculateFor().equals(CalculateFor.LOWERCASE_WORD)){
word = word.toLowerCase();
}
for (int i = 0; i < word.length() - stats.getFilter().getStringLength() + 1; i++) {
// TODO: locila?

View File

@ -22,6 +22,7 @@ public enum CalculateFor {
// DIST_LEMMAS("lema");
WORD("calculateFor.WORD"),
LOWERCASE_WORD("calculateFor.LOWERCASE_WORD"),
NORMALIZED_WORD("calculateFor.NORMALIZED_WORD"),
LEMMA("calculateFor.LEMMA"),
MORPHOSYNTACTIC_SPECS("calculateFor.MORPHOSYNTACTIC_SPECS"),
@ -47,6 +48,9 @@ public enum CalculateFor {
if (WORD.toString().equals(cf)) {
return WORD;
}
if (LOWERCASE_WORD.toString().equals(cf)) {
return LOWERCASE_WORD;
}
if (LEMMA.toString().equals(cf)) {
return LEMMA;
}
@ -71,6 +75,8 @@ public enum CalculateFor {
switch (this) {
case WORD:
return I18N.get("exportTable.part.totalSumLetters") + " " + I18N.get("exportTable.part.word");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.totalSumLetters") + " " + I18N.get("exportTable.part.lowercaseWord");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.totalSumLetters") + " " + I18N.get("exportTable.part.normalizedWord");
case LEMMA:
@ -92,6 +98,8 @@ public enum CalculateFor {
switch (this) {
case WORD:
return I18N.get("exportTable.part.totalSumString") + " " + I18N.get("exportTable.part.word");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.totalSumString") + " " + I18N.get("exportTable.part.lowercaseWord");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.totalSumString") + " " + I18N.get("exportTable.part.normalizedWord");
case LEMMA:
@ -118,6 +126,8 @@ public enum CalculateFor {
switch (this) {
case WORD:
return I18N.get("exportTable.part.totalFoundLetters") + " " + I18N.get("exportTable.part.word");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.totalFoundLetters") + " " + I18N.get("exportTable.part.lowercaseWord");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.totalFoundLetters") + " " + I18N.get("exportTable.part.normalizedWord");
case LEMMA:
@ -139,6 +149,8 @@ public enum CalculateFor {
switch (this) {
case WORD:
return I18N.get("exportTable.part.totalFound") + " " + I18N.get("exportTable.part.word");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.totalFound") + " " + I18N.get("exportTable.part.lowercaseWord");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.totalFound") + " " + I18N.get("exportTable.part.normalizedWord");
case LEMMA:
@ -168,6 +180,8 @@ public enum CalculateFor {
switch(this){
case WORD:
return I18N.get("exportTable.part.absoluteFrequency") + " " + I18N.get("exportTable.part.word2");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.absoluteFrequency") + " " + I18N.get("exportTable.part.lowercaseWord2");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.absoluteFrequency") + " " + I18N.get("exportTable.part.normalizedWord2");
case LEMMA:
@ -194,6 +208,8 @@ public enum CalculateFor {
switch(this){
case WORD:
return I18N.get("exportTable.part.share") + " " + I18N.get("exportTable.part.word2");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.share") + " " + I18N.get("exportTable.part.lowercaseWord2");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.share") + " " + I18N.get("exportTable.part.normalizedWord2");
case LEMMA:
@ -221,6 +237,8 @@ public enum CalculateFor {
case WORD:
case DIST_WORDS:
return I18N.get("exportTable.part.word3");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.lowercaseWord3");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.normalizedWord3");
case LEMMA:
@ -240,6 +258,8 @@ public enum CalculateFor {
case WORD:
case DIST_WORDS:
return I18N.get("exportTable.part.word3") + " " + I18N.get("exportTable.part.set");
case LOWERCASE_WORD:
return I18N.get("exportTable.part.lowercaseWord3") + " " + I18N.get("exportTable.part.set");
case NORMALIZED_WORD:
return I18N.get("exportTable.part.normalizedWord3") + " " + I18N.get("exportTable.part.set");
case LEMMA:

View File

@ -36,6 +36,7 @@ public class Corpus {
boolean hasMsdData;
private ArrayList<String> validationErrors;
private String corpusName = "";
private String punctuation = "punctuation.COMMA";
public Corpus() {
validationErrors = new ArrayList<>();
@ -52,6 +53,16 @@ public class Corpus {
logger.info("Corpus.set: ", corpusName);
}
public String getPunctuation() {
return punctuation;
}
public void setPunctuation(String punctuation) {
// System.out.println(corpusName);
this.punctuation = punctuation;
logger.info("Punctuation.set: ", punctuation);
}
public CorpusType getCorpusType() {
return corpusType;
}

View File

@ -320,6 +320,10 @@ public class Filter implements Cloneable {
ArrayList<CalculateFor> oldWp = ((ArrayList<CalculateFor>) filter.get(WORD_PARTS));
switch (wp) {
case LOWERCASE_WORD:
if (!oldWp.contains(CalculateFor.LOWERCASE_WORD))
oldWp.add(CalculateFor.LOWERCASE_WORD);
break;
case WORD:
case DIST_WORDS:
if (!oldWp.contains(CalculateFor.WORD))

View File

@ -324,28 +324,28 @@ public class StatisticsNew {
return true;
}
public boolean recalculateAndSaveResultToDisk() throws UnsupportedEncodingException {
filter.setAl(AnalysisLevel.WORD_FORMATION);
resultTitle = generateResultTitle();
if (useDB) {
result = db.getDump();
db.delete();
}
// if no results and nothing to save, return false
if (!(result.size() > 0)) {
analysisProducedResults = false;
return false;
} else {
analysisProducedResults = true;
}
WordFormation.calculateStatistics(this);
Export.SetToCSV(resultTitle, resultCustom, corpus.getChosenResultsLocation(), headerInfoBlock());
return true;
}
// public boolean recalculateAndSaveResultToDisk() throws UnsupportedEncodingException {
// filter.setAl(AnalysisLevel.WORD_FORMATION);
// resultTitle = generateResultTitle();
//
// if (useDB) {
// result = db.getDump();
// db.delete();
// }
//
// // if no results and nothing to save, return false
// if (!(result.size() > 0)) {
// analysisProducedResults = false;
// return false;
// } else {
// analysisProducedResults = true;
// }
//
// WordFormation.calculateStatistics(this);
//
// Export.SetToCSV(resultTitle, resultCustom, corpus.getChosenResultsLocation(), headerInfoBlock());
// return true;
// }
private Map<String, Map<MultipleHMKeys, Long>> sortNestedMap(Map<String, ConcurrentHashMap<MultipleHMKeys, AtomicLong>> nestedMap, int limit) {
Map<String, Map<MultipleHMKeys, Long>> sorted = new HashMap<>();
@ -682,6 +682,11 @@ public class StatisticsNew {
info.put(I18N.get("exportHeader.minOccurrences"), String.valueOf(filter.getMinimalOccurrences()));
info.put(I18N.get("exportHeader.minTaxonomies"), String.valueOf(filter.getMinimalTaxonomy()));
// if not letters extraction
if(filter.getNgramValue() > 0) {
info.put(I18N.get("exportHeader.minRelFre"), String.valueOf(filter.getMinimalRelFre()));
}
if (corpus.getCorpusType() == CorpusType.SOLAR) {
HashMap<String, ObservableList<String>> filters = corpus.getSolarSelectedFilters();

View File

@ -28,7 +28,11 @@ public interface Word {
}
default String getWord(ArrayList<CalculateFor> wordParts){
return get(wordParts, CalculateFor.WORD);
String w = get(wordParts, CalculateFor.WORD);
if (w == null){
return get(wordParts, CalculateFor.LOWERCASE_WORD);
}
return w;
}
default String getLemma(ArrayList<CalculateFor> wordParts){
@ -102,9 +106,9 @@ public interface Word {
String returnValue = "";
if (cvv) {
returnValue = calculateFor == CalculateFor.WORD ? getCVVWord(cf) : getCVVLemma(cf);
returnValue = (calculateFor == CalculateFor.WORD || calculateFor == CalculateFor.LOWERCASE_WORD) ? getCVVWord(cf) : getCVVLemma(cf);
} else {
returnValue = calculateFor == CalculateFor.WORD ? getWord(cf) : getLemma(cf);
returnValue = (calculateFor == CalculateFor.WORD || calculateFor == CalculateFor.LOWERCASE_WORD) ? getWord(cf) : getLemma(cf);
}
return returnValue;

View File

@ -179,7 +179,7 @@ public class CharacterAnalysisTab {
private ChangeListener<Boolean> minimalOccurrencesListener;
private ChangeListener<Boolean> minimalTaxonomyListener;
private static final String [] N_GRAM_COMPUTE_FOR_LETTERS_ARRAY = {"calculateFor.WORD", "calculateFor.LEMMA"};
private static final String [] N_GRAM_COMPUTE_FOR_LETTERS_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD", "calculateFor.LEMMA"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_LETTERS = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_LETTERS_ARRAY));
private static final String [] TAXONOMY_SET_OPERATION_ARRAY = {"taxonomySetOperation.UNION", "taxonomySetOperation.INTERSECTION"};
@ -623,7 +623,7 @@ public class CharacterAnalysisTab {
}
// if calculateFor was selected for something other than a word or a lemma -> reset
if (!(calculateFor == CalculateFor.WORD || calculateFor == CalculateFor.LEMMA)) {
if (!(calculateFor == CalculateFor.WORD || calculateFor == CalculateFor.LEMMA || calculateFor == CalculateFor.LOWERCASE_WORD)) {
// if the user selected something else before selecting ngram for letters, reset that choice
calculateFor = CalculateFor.WORD;

View File

@ -92,6 +92,9 @@ public class CorpusTab {
@FXML
public Label outputNameL;
@FXML
public Label punctuationL;
@FXML
public ImageView chooseCorpusLocationI;
@ -107,6 +110,9 @@ public class CorpusTab {
@FXML
public ImageView outputNameI;
@FXML
public ImageView punctuationI;
@FXML
public TextField outputNameTF;
public String outputName = "";
@ -115,6 +121,10 @@ public class CorpusTab {
public ComboBox<String> selectReaderCB;
public String selectReader;
@FXML
public ComboBox<String> punctuationCB;
public String punctuation;
@FXML
private ProgressIndicator locationScanPI;
@ -137,7 +147,7 @@ public class CorpusTab {
private OneWordAnalysisTab oneWordTabController;
private CharacterAnalysisTab catController;
private FiltersForSolar ffsController;
private WordFormationTab wfController;
// private WordFormationTab wfController;
private WordLevelTab wlController;
private HostServices hostService;
@ -146,6 +156,10 @@ public class CorpusTab {
private static final String [] SELECT_READER_ARRAY = {"VERT + REGI", "XML (Šolar 1.0)", "XML (GOS 1.0)", "XML (ssj500k 2.1)", "XML (Gigafida 2.0)", "XML (Gigafida 1.0, Kres 1.0)"};
private static final ArrayList<String> SELECT_READER = new ArrayList<>(Arrays.asList(SELECT_READER_ARRAY));
private static final String [] PUNCTUATION_ARRAY = {"punctuation.COMMA", "punctuation.POINT"};
private static final ArrayList<String> PUNCTUATION = new ArrayList<>(Arrays.asList(PUNCTUATION_ARRAY));
private Collection<File> corpusFiles;
private File selectedDirectory;
@ -219,6 +233,23 @@ public class CorpusTab {
selectReaderCB.getSelectionModel().select(0);
// comma / point choice
punctuationCB.valueProperty().addListener((observable, oldValue, newValue) -> {
if(newValue == null){
// newValue = I18N.getTranslatedValue(oldValue, N_GRAM_COMPUTE_FOR_LETTERS);
newValue = I18N.getTranslatedValue(oldValue, PUNCTUATION);
punctuationCB.getSelectionModel().select(newValue);
}
// System.out.println(oldValue);
// System.out.println(newValue);
punctuation = newValue;
if(corpus != null) {
corpus.setPunctuation(I18N.getRootValue(punctuation, PUNCTUATION));
}
});
punctuationCB.getSelectionModel().select(0);
// add listeners
chooseCorpusLocationB.setOnAction(e -> chooseCorpusLocation());
// chooseCorpusLocationB.setTooltip(new Tooltip(I18N.get("message.TOOLTIP_chooseCorpusLocationB")));
@ -301,12 +332,16 @@ public class CorpusTab {
readHeaderInfoL.textProperty().bind(I18N.createStringBinding("label.readHeaderInfo"));
selectReaderL.textProperty().bind(I18N.createStringBinding("label.selectReader"));
outputNameL.textProperty().bind(I18N.createStringBinding("label.outputName"));
punctuationL.textProperty().bind(I18N.createStringBinding("label.punctuation"));
addTooltipToImage(chooseCorpusLocationI, I18N.createStringBinding("label.corpusTab.chooseCorpusLocationH"));
addTooltipToImage(readHeaderInfoI, I18N.createStringBinding("label.corpusTab.readHeaderInfoH"));
addTooltipToImage(chooseResultsLocationI, I18N.createStringBinding("label.corpusTab.chooseResultsLocationH"));
addTooltipToImage(selectReaderI, I18N.createStringBinding("label.corpusTab.selectReaderH"));
addTooltipToImage(outputNameI, I18N.createStringBinding("label.corpusTab.outputNameH"));
addTooltipToImage(punctuationI, I18N.createStringBinding("label.corpusTab.punctuationH"));
punctuationCB.itemsProperty().bind(I18N.createObjectBinding(PUNCTUATION));
}
private void togglePiAndSetCorpusWrapper(boolean piIsActive) {
@ -456,8 +491,9 @@ public class CorpusTab {
}
}
}
System.out.println(outputName);
// System.out.println(outputName);
corpus.setCorpusName(outputName);
corpus.setPunctuation(I18N.getRootValue(punctuation, PUNCTUATION));
}
/**

View File

@ -167,6 +167,30 @@ public final class I18N {
// return MessageFormat.format(bundle.getString(key), args);
}
public static String getRootValue(String oldValue, ArrayList<String> nGramComputeForLetters) {
Locale loc;
if(getLocale().equals(Locale.ENGLISH)) {
loc = new Locale.Builder().setLanguage("sl").setRegion("SI").build();
} else {
loc = Locale.ENGLISH;
}
for (String el : nGramComputeForLetters){
if (oldValue.equals(getIndependent(el, loc))){
return el;
}
}
// in case translated language doesn't contain specified word, try original language
for (String el : nGramComputeForLetters){
if (oldValue.equals(get(el))){
return el;
}
}
return null;
}
public static String getTranslatedValue(String oldValue, ArrayList<String> nGramComputeForLetters) {
Locale loc;
if(getLocale().equals(Locale.ENGLISH)) {

View File

@ -210,13 +210,13 @@ public class OneWordAnalysisTab {
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS = FXCollections.observableArrayList("lema", "različnica");
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_LETTERS = FXCollections.observableArrayList("lema", "različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ARRAY = {"calculateFor.WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_ARRAY));
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS_ORTH = FXCollections.observableArrayList("različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY = {"calculateFor.WORD"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS_ORTH = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY));
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS_GOS = FXCollections.observableArrayList("lema", "različnica", "normalizirana različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY = {"calculateFor.WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS", "calculateFor.NORMALIZED_WORD"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS", "calculateFor.NORMALIZED_WORD"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS_GOS = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY));
// private static final ObservableList<String> alsoVisualizeItemsLemma = FXCollections.observableArrayList("besedna vrsta", "oblikoskladenjska oznaka");
private static final String [] ALSO_VISUALIZE_ITEMS_LEMMA_ARRAY = {"calculateFor.WORD_TYPE", "calculateFor.MORPHOSYNTACTIC_SPECS"};
@ -300,7 +300,7 @@ public class OneWordAnalysisTab {
alsoVisualizeCCB.getItems().removeAll();
if (newValue.equals(CalculateFor.LEMMA.toString())) {
alsoVisualizeCCB.getItems().setAll(I18N.translatedObservableList(ALSO_VISUALIZE_ITEMS_LEMMA));
} else if (newValue.equals(CalculateFor.WORD.toString())) {
} else if (newValue.equals(CalculateFor.WORD.toString()) || newValue.equals(CalculateFor.LOWERCASE_WORD.toString())) {
if (corpus.getCorpusType() == CorpusType.GOS)
alsoVisualizeCCB.getItems().setAll(I18N.translatedObservableList(ALSO_VISUALIZE_ITEMS_WORDS_GOS));
else

View File

@ -250,13 +250,13 @@ public class StringAnalysisTabNew2 {
// private static final ObservableList<String> alsoVisualizeItemsEmpty = FXCollections.observableArrayList();
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_LETTERS = FXCollections.observableArrayList("lema", "različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ARRAY = {"calculateFor.WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_ARRAY));
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS_ORTH = FXCollections.observableArrayList("različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY = {"calculateFor.WORD"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS_ORTH = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY));
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS_GOS = FXCollections.observableArrayList("lema", "različnica", "normalizirana različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY = {"calculateFor.WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS", "calculateFor.NORMALIZED_WORD"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD", "calculateFor.LEMMA", "calculateFor.MORPHOSYNTACTIC_SPECS", "calculateFor.NORMALIZED_WORD"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS_GOS = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY));
// private static final ObservableList<String> alsoVisualizeItemsLemma = FXCollections.observableArrayList("besedna vrsta", "oblikoskladenjska oznaka");
private static final String [] ALSO_VISUALIZE_ITEMS_LEMMA_ARRAY = {"calculateFor.WORD_TYPE", "calculateFor.MORPHOSYNTACTIC_SPECS"};
@ -408,7 +408,7 @@ public class StringAnalysisTabNew2 {
alsoVisualizeCCB.getItems().removeAll();
if (newValue.equals(CalculateFor.LEMMA.toString())) {
alsoVisualizeCCB.getItems().setAll(I18N.translatedObservableList(ALSO_VISUALIZE_ITEMS_LEMMA));
} else if (newValue.equals(CalculateFor.WORD.toString())) {
} else if (newValue.equals(CalculateFor.WORD.toString()) || newValue.equals(CalculateFor.LOWERCASE_WORD.toString())) {
if (corpus.getCorpusType() == CorpusType.GOS)
alsoVisualizeCCB.getItems().setAll(I18N.translatedObservableList(ALSO_VISUALIZE_ITEMS_WORDS_GOS));
else

View File

@ -1,260 +1,260 @@
package gui;
import static alg.XML_processing.*;
import static gui.GUIController.*;
import java.io.File;
import java.io.UnsupportedEncodingException;
import java.util.*;
import javafx.application.HostServices;
import javafx.scene.control.*;
import org.apache.commons.lang3.StringUtils;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.controlsfx.control.CheckComboBox;
import data.*;
import javafx.collections.ListChangeListener;
import javafx.collections.ObservableList;
import javafx.concurrent.Task;
import javafx.fxml.FXML;
import javafx.scene.layout.AnchorPane;
@SuppressWarnings("Duplicates")
public class WordFormationTab {
public final static Logger logger = LogManager.getLogger(WordFormationTab.class);
public AnchorPane wordAnalysisTabPane;
@FXML
public Label selectedFiltersLabel;
@FXML
public Label solarFilters;
@FXML
private CheckComboBox<String> taxonomyCCB;
private ArrayList<Taxonomy> taxonomy;
@FXML
private TextField minimalOccurrencesTF;
private Integer minimalOccurrences;
@FXML
private TextField minimalTaxonomyTF;
private Integer minimalTaxonomy;
@FXML
private Button computeB;
@FXML
public ProgressBar ngramProgressBar;
@FXML
public Label progressLabel;
@FXML
private Hyperlink helpH;
private Corpus corpus;
private HashMap<String, HashSet<String>> solarFiltersMap;
private HostServices hostService;
// after header scan
private ObservableList<String> taxonomyCCBValues;
private CorpusType currentCorpusType;
private boolean useDb;
public void init() {
// taxonomy
if (Tax.getCorpusTypesWithTaxonomy().contains(corpus.getCorpusType())) {
taxonomyCCB.getItems().removeAll();
taxonomyCCB.getItems().setAll(corpus.getObservableListTaxonomy());
taxonomyCCB.getCheckModel().getCheckedItems().addListener((ListChangeListener<String>) c -> {
taxonomy = new ArrayList<>();
ObservableList<String> checkedItems = taxonomyCCB.getCheckModel().getCheckedItems();
ArrayList<Taxonomy> checkedItemsTaxonomy = Taxonomy.convertStringListToTaxonomyList(checkedItems, corpus);
taxonomy.addAll(checkedItemsTaxonomy);
logger.info(String.format("Selected taxonomy: %s", StringUtils.join(checkedItems, ",")));
});
taxonomyCCB.getCheckModel().clearChecks();
} else {
taxonomyCCB.setDisable(true);
}
// set default values
minimalOccurrencesTF.setText("1");
minimalOccurrences = 1;
minimalTaxonomyTF.setText("1");
minimalTaxonomy = 1;
minimalOccurrencesTF.focusedProperty().addListener((observable, oldValue, newValue) -> {
if (!newValue) {
// focus lost
String value = minimalOccurrencesTF.getText();
if (!ValidationUtil.isEmpty(value)) {
if (!ValidationUtil.isNumber(value)) {
logAlert("minimalOccurrencesTF: " + I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
GUIController.showAlert(Alert.AlertType.ERROR, I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
} else {
minimalOccurrences = Integer.parseInt(value);
}
} else {
minimalOccurrencesTF.setText("1");
minimalOccurrences = 1;
}
}
});
minimalTaxonomyTF.focusedProperty().addListener((observable, oldValue, newValue) -> {
if (!newValue) {
// focus lost
String value = minimalTaxonomyTF.getText();
if (!ValidationUtil.isEmpty(value)) {
if (!ValidationUtil.isNumber(value)) {
logAlert("minimalTaxonomyTF: " + I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
GUIController.showAlert(Alert.AlertType.ERROR, I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
} else {
minimalTaxonomy = Integer.parseInt(value);
}
} else {
minimalTaxonomyTF.setText("1");
minimalTaxonomy = 1;
}
}
});
computeB.setOnAction(e -> {
compute();
logger.info("compute button");
});
helpH.setOnAction(e -> openHelpWebsite());
}
private void compute() {
Filter filter = new Filter();
filter.setNgramValue(1);
filter.setCalculateFor(CalculateFor.MORPHOSYNTACTIC_PROPERTY);
filter.setTaxonomy(taxonomy);
filter.setAl(AnalysisLevel.STRING_LEVEL);
filter.setSkipValue(0);
filter.setMsd(new ArrayList<>());
filter.setIsCvv(false);
filter.setSolarFilters(solarFiltersMap);
filter.setMinimalOccurrences(minimalOccurrences);
filter.setMinimalTaxonomy(minimalTaxonomy);
String message = Validation.validateForStringLevel(filter);
if (message == null) {
// no errors
logger.info("Executing: ", filter.toString());
StatisticsNew statistic = new StatisticsNew(corpus, filter, useDb);
execute(statistic);
} else {
logAlert(message);
showAlert(Alert.AlertType.ERROR, "Prosim izpolnite polja:", message);
}
}
private void openHelpWebsite(){
hostService.showDocument(Messages.HELP_URL);
}
private void execute(StatisticsNew statistic) {
logger.info("Started execution: ", statistic.getFilter());
Collection<File> corpusFiles = statistic.getCorpus().getDetectedCorpusFiles();
final Task<Void> task = new Task<Void>() {
@SuppressWarnings("Duplicates")
@Override
protected Void call() throws Exception {
int i = 0;
Date startTime = new Date();
Date previousTime = new Date();
for (File f : corpusFiles) {
readXML(f.toString(), statistic);
i++;
this.updateProgress(i, corpusFiles.size());
this.updateMessage(String.format(I18N.get("message.ONGOING_NOTIFICATION_ANALYZING_FILE_X_OF_Y"), i, corpusFiles.size(), f.getName()));
}
return null;
}
};
ngramProgressBar.progressProperty().bind(task.progressProperty());
progressLabel.textProperty().bind(task.messageProperty());
task.setOnSucceeded(e -> {
try {
// first, we have to recalculate all occurrences to detailed statistics
boolean successullySaved = statistic.recalculateAndSaveResultToDisk();
if (successullySaved) {
showAlert(Alert.AlertType.INFORMATION, I18N.get("message.NOTIFICATION_ANALYSIS_COMPLETED"));
} else {
showAlert(Alert.AlertType.INFORMATION, I18N.get("message.NOTIFICATION_ANALYSIS_COMPLETED_NO_RESULTS"));
}
} catch (UnsupportedEncodingException e1) {
showAlert(Alert.AlertType.ERROR, I18N.get("message.ERROR_WHILE_SAVING_RESULTS_TO_CSV"));
logger.error("Error while saving", e1);
}
ngramProgressBar.progressProperty().unbind();
ngramProgressBar.setStyle(Settings.FX_ACCENT_OK);
progressLabel.textProperty().unbind();
progressLabel.setText("");
});
task.setOnFailed(e -> {
showAlert(Alert.AlertType.ERROR, I18N.get("message.ERROR_WHILE_EXECUTING"));
logger.error("Error while executing", e);
ngramProgressBar.progressProperty().unbind();
ngramProgressBar.setProgress(0.0);
ngramProgressBar.setStyle(Settings.FX_ACCENT_NOK);
progressLabel.textProperty().unbind();
progressLabel.setText("");
});
final Thread thread = new Thread(task, "task");
thread.setDaemon(true);
thread.start();
}
private void logAlert(String alert) {
logger.info("alert: " + alert);
}
public void setCorpus(Corpus corpus) {
this.corpus = corpus;
if (corpus.getCorpusType() != CorpusType.SOLAR) {
setSelectedFiltersLabel(null);
} else {
setSelectedFiltersLabel("/");
}
}
public void setSelectedFiltersLabel(String content) {
if (content != null) {
solarFilters.setVisible(true);
selectedFiltersLabel.setVisible(true);
selectedFiltersLabel.setText(content);
} else {
solarFilters.setVisible(false);
selectedFiltersLabel.setVisible(false);
}
}
public void setSolarFiltersMap(HashMap<String, HashSet<String>> solarFiltersMap) {
this.solarFiltersMap = solarFiltersMap;
}
public void setHostServices(HostServices hostServices){
this.hostService = hostServices;
}
}
//package gui;
//
//import static alg.XML_processing.*;
//import static gui.GUIController.*;
//
//import java.io.File;
//import java.io.UnsupportedEncodingException;
//import java.util.*;
//
//import javafx.application.HostServices;
//import javafx.scene.control.*;
//import org.apache.commons.lang3.StringUtils;
//import org.apache.logging.log4j.LogManager;
//import org.apache.logging.log4j.Logger;
//import org.controlsfx.control.CheckComboBox;
//
//import data.*;
//import javafx.collections.ListChangeListener;
//import javafx.collections.ObservableList;
//import javafx.concurrent.Task;
//import javafx.fxml.FXML;
//import javafx.scene.layout.AnchorPane;
//
//@SuppressWarnings("Duplicates")
//public class WordFormationTab {
// public final static Logger logger = LogManager.getLogger(WordFormationTab.class);
//
// public AnchorPane wordAnalysisTabPane;
//
// @FXML
// public Label selectedFiltersLabel;
// @FXML
// public Label solarFilters;
//
// @FXML
// private CheckComboBox<String> taxonomyCCB;
// private ArrayList<Taxonomy> taxonomy;
//
// @FXML
// private TextField minimalOccurrencesTF;
// private Integer minimalOccurrences;
//
// @FXML
// private TextField minimalTaxonomyTF;
// private Integer minimalTaxonomy;
//
// @FXML
// private Button computeB;
//
// @FXML
// public ProgressBar ngramProgressBar;
// @FXML
// public Label progressLabel;
//
// @FXML
// private Hyperlink helpH;
//
// private Corpus corpus;
// private HashMap<String, HashSet<String>> solarFiltersMap;
// private HostServices hostService;
//
// // after header scan
// private ObservableList<String> taxonomyCCBValues;
// private CorpusType currentCorpusType;
// private boolean useDb;
//
//
// public void init() {
// // taxonomy
// if (Tax.getCorpusTypesWithTaxonomy().contains(corpus.getCorpusType())) {
// taxonomyCCB.getItems().removeAll();
// taxonomyCCB.getItems().setAll(corpus.getObservableListTaxonomy());
// taxonomyCCB.getCheckModel().getCheckedItems().addListener((ListChangeListener<String>) c -> {
// taxonomy = new ArrayList<>();
// ObservableList<String> checkedItems = taxonomyCCB.getCheckModel().getCheckedItems();
// ArrayList<Taxonomy> checkedItemsTaxonomy = Taxonomy.convertStringListToTaxonomyList(checkedItems, corpus);
// taxonomy.addAll(checkedItemsTaxonomy);
// logger.info(String.format("Selected taxonomy: %s", StringUtils.join(checkedItems, ",")));
// });
// taxonomyCCB.getCheckModel().clearChecks();
// } else {
// taxonomyCCB.setDisable(true);
// }
//
// // set default values
// minimalOccurrencesTF.setText("1");
// minimalOccurrences = 1;
//
// minimalTaxonomyTF.setText("1");
// minimalTaxonomy = 1;
//
// minimalOccurrencesTF.focusedProperty().addListener((observable, oldValue, newValue) -> {
// if (!newValue) {
// // focus lost
// String value = minimalOccurrencesTF.getText();
// if (!ValidationUtil.isEmpty(value)) {
// if (!ValidationUtil.isNumber(value)) {
// logAlert("minimalOccurrencesTF: " + I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
// GUIController.showAlert(Alert.AlertType.ERROR, I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
// } else {
// minimalOccurrences = Integer.parseInt(value);
// }
// } else {
// minimalOccurrencesTF.setText("1");
// minimalOccurrences = 1;
// }
// }
// });
//
// minimalTaxonomyTF.focusedProperty().addListener((observable, oldValue, newValue) -> {
// if (!newValue) {
// // focus lost
// String value = minimalTaxonomyTF.getText();
// if (!ValidationUtil.isEmpty(value)) {
// if (!ValidationUtil.isNumber(value)) {
// logAlert("minimalTaxonomyTF: " + I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
// GUIController.showAlert(Alert.AlertType.ERROR, I18N.get("message.WARNING_ONLY_NUMBERS_ALLOWED"));
// } else {
// minimalTaxonomy = Integer.parseInt(value);
// }
// } else {
// minimalTaxonomyTF.setText("1");
// minimalTaxonomy = 1;
// }
// }
// });
//
// computeB.setOnAction(e -> {
// compute();
// logger.info("compute button");
// });
//
// helpH.setOnAction(e -> openHelpWebsite());
// }
//
// private void compute() {
// Filter filter = new Filter();
// filter.setNgramValue(1);
// filter.setCalculateFor(CalculateFor.MORPHOSYNTACTIC_PROPERTY);
// filter.setTaxonomy(taxonomy);
// filter.setAl(AnalysisLevel.STRING_LEVEL);
// filter.setSkipValue(0);
// filter.setMsd(new ArrayList<>());
// filter.setIsCvv(false);
// filter.setSolarFilters(solarFiltersMap);
// filter.setMinimalOccurrences(minimalOccurrences);
// filter.setMinimalTaxonomy(minimalTaxonomy);
//
// String message = Validation.validateForStringLevel(filter);
// if (message == null) {
// // no errors
// logger.info("Executing: ", filter.toString());
// StatisticsNew statistic = new StatisticsNew(corpus, filter, useDb);
// execute(statistic);
// } else {
// logAlert(message);
// showAlert(Alert.AlertType.ERROR, "Prosim izpolnite polja:", message);
// }
// }
//
// private void openHelpWebsite(){
// hostService.showDocument(Messages.HELP_URL);
// }
//
// private void execute(StatisticsNew statistic) {
// logger.info("Started execution: ", statistic.getFilter());
//
// Collection<File> corpusFiles = statistic.getCorpus().getDetectedCorpusFiles();
//
// final Task<Void> task = new Task<Void>() {
// @SuppressWarnings("Duplicates")
// @Override
// protected Void call() throws Exception {
// int i = 0;
// Date startTime = new Date();
// Date previousTime = new Date();
// for (File f : corpusFiles) {
// readXML(f.toString(), statistic);
// i++;
// this.updateProgress(i, corpusFiles.size());
// this.updateMessage(String.format(I18N.get("message.ONGOING_NOTIFICATION_ANALYZING_FILE_X_OF_Y"), i, corpusFiles.size(), f.getName()));
// }
//
// return null;
// }
// };
//
// ngramProgressBar.progressProperty().bind(task.progressProperty());
// progressLabel.textProperty().bind(task.messageProperty());
//
// task.setOnSucceeded(e -> {
// try {
// // first, we have to recalculate all occurrences to detailed statistics
// boolean successullySaved = statistic.recalculateAndSaveResultToDisk();
//
// if (successullySaved) {
// showAlert(Alert.AlertType.INFORMATION, I18N.get("message.NOTIFICATION_ANALYSIS_COMPLETED"));
// } else {
// showAlert(Alert.AlertType.INFORMATION, I18N.get("message.NOTIFICATION_ANALYSIS_COMPLETED_NO_RESULTS"));
// }
// } catch (UnsupportedEncodingException e1) {
// showAlert(Alert.AlertType.ERROR, I18N.get("message.ERROR_WHILE_SAVING_RESULTS_TO_CSV"));
// logger.error("Error while saving", e1);
// }
//
// ngramProgressBar.progressProperty().unbind();
// ngramProgressBar.setStyle(Settings.FX_ACCENT_OK);
// progressLabel.textProperty().unbind();
// progressLabel.setText("");
// });
//
// task.setOnFailed(e -> {
// showAlert(Alert.AlertType.ERROR, I18N.get("message.ERROR_WHILE_EXECUTING"));
// logger.error("Error while executing", e);
// ngramProgressBar.progressProperty().unbind();
// ngramProgressBar.setProgress(0.0);
// ngramProgressBar.setStyle(Settings.FX_ACCENT_NOK);
// progressLabel.textProperty().unbind();
// progressLabel.setText("");
// });
//
// final Thread thread = new Thread(task, "task");
// thread.setDaemon(true);
// thread.start();
// }
//
// private void logAlert(String alert) {
// logger.info("alert: " + alert);
// }
//
//
// public void setCorpus(Corpus corpus) {
// this.corpus = corpus;
//
// if (corpus.getCorpusType() != CorpusType.SOLAR) {
// setSelectedFiltersLabel(null);
// } else {
// setSelectedFiltersLabel("/");
// }
// }
//
// public void setSelectedFiltersLabel(String content) {
// if (content != null) {
// solarFilters.setVisible(true);
// selectedFiltersLabel.setVisible(true);
// selectedFiltersLabel.setText(content);
// } else {
// solarFilters.setVisible(false);
// selectedFiltersLabel.setVisible(false);
// }
// }
//
// public void setSolarFiltersMap(HashMap<String, HashSet<String>> solarFiltersMap) {
// this.solarFiltersMap = solarFiltersMap;
// }
//
// public void setHostServices(HostServices hostServices){
// this.hostService = hostServices;
// }
//}

View File

@ -228,13 +228,13 @@ public class WordLevelTab {
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS = FXCollections.observableArrayList("lema", "različnica");
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_LETTERS = FXCollections.observableArrayList("lema", "različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ARRAY = {"calculateFor.WORD", "calculateFor.LEMMA"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD", "calculateFor.LEMMA"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_ARRAY));
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS_ORTH = FXCollections.observableArrayList("različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY = {"calculateFor.WORD"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS_ORTH = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_ORTH_ARRAY));
// private static final ObservableList<String> N_GRAM_COMPUTE_FOR_WORDS_GOS = FXCollections.observableArrayList("lema", "različnica", "normalizirana različnica");
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY = {"calculateFor.WORD", "calculateFor.LEMMA", "calculateFor.NORMALIZED_WORD"};
private static final String [] N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY = {"calculateFor.WORD", "calculateFor.LOWERCASE_WORD", "calculateFor.LEMMA", "calculateFor.NORMALIZED_WORD"};
private static final ArrayList<String> N_GRAM_COMPUTE_FOR_WORDS_GOS = new ArrayList<>(Arrays.asList(N_GRAM_COMPUTE_FOR_WORDS_GOS_ARRAY));
// private static final ObservableList<String> alsoVisualizeItemsLemma = FXCollections.observableArrayList("besedna vrsta", "oblikoskladenjska oznaka");
private static final String [] ALSO_VISUALIZE_ITEMS_LEMMA_ARRAY = {"calculateFor.WORD_TYPE", "calculateFor.MORPHOSYNTACTIC_SPECS"};
@ -320,7 +320,7 @@ public class WordLevelTab {
alsoVisualizeCCB.getItems().removeAll();
if (newValue.equals(CalculateFor.LEMMA.toString())) {
alsoVisualizeCCB.getItems().setAll(I18N.translatedObservableList(ALSO_VISUALIZE_ITEMS_LEMMA));
} else if (newValue.equals(CalculateFor.WORD.toString())) {
} else if (newValue.equals(CalculateFor.WORD.toString()) || newValue.equals(CalculateFor.LOWERCASE_WORD.toString())) {
if (corpus.getCorpusType() == CorpusType.GOS)
alsoVisualizeCCB.getItems().setAll(I18N.translatedObservableList(ALSO_VISUALIZE_ITEMS_WORDS_GOS));
else

View File

@ -23,41 +23,41 @@ import data.Enums.WordLevelType;
@SuppressWarnings("unchecked")
public class Export {
public static void SetToJSON(Set<Pair<String, Map<MultipleHMKeys, Long>>> set) {
JSONArray wrapper = new JSONArray();
for (Pair<String, Map<MultipleHMKeys, Long>> p : set) {
JSONArray data_wrapper = new JSONArray();
JSONObject metric = new JSONObject();
String title = p.getLeft();
Map<MultipleHMKeys, Long> map = p.getRight();
if (map.isEmpty())
continue;
long total = Util.mapSumFrequencies(map);
for (Map.Entry<MultipleHMKeys, Long> e : map.entrySet()) {
JSONObject data_entry = new JSONObject();
data_entry.put("word", e.getKey());
data_entry.put("frequency", e.getValue());
data_entry.put("percent", formatNumberAsPercent((double) e.getValue() / total));
data_wrapper.add(data_entry);
}
metric.put("Title", title);
metric.put("data", data_wrapper);
wrapper.add(metric);
}
try (FileWriter file = new FileWriter("statistics.json")) {
file.write(wrapper.toJSONString());
} catch (IOException e) {
e.printStackTrace();
}
}
// public static void SetToJSON(Set<Pair<String, Map<MultipleHMKeys, Long>>> set) {
// JSONArray wrapper = new JSONArray();
//
// for (Pair<String, Map<MultipleHMKeys, Long>> p : set) {
// JSONArray data_wrapper = new JSONArray();
// JSONObject metric = new JSONObject();
//
// String title = p.getLeft();
// Map<MultipleHMKeys, Long> map = p.getRight();
//
// if (map.isEmpty())
// continue;
//
// long total = Util.mapSumFrequencies(map);
//
// for (Map.Entry<MultipleHMKeys, Long> e : map.entrySet()) {
// JSONObject data_entry = new JSONObject();
// data_entry.put("word", e.getKey());
// data_entry.put("frequency", e.getValue());
// data_entry.put("percent", formatNumberAsPercent((double) e.getValue() / total));
//
// data_wrapper.add(data_entry);
// }
//
// metric.put("Title", title);
// metric.put("data", data_wrapper);
// wrapper.add(metric);
// }
//
// try (FileWriter file = new FileWriter("statistics.json")) {
// file.write(wrapper.toJSONString());
// } catch (IOException e) {
// e.printStackTrace();
// }
// }
public static String SetToCSV(Set<Pair<String, Map<MultipleHMKeys, Long>>> set, File resultsPath, LinkedHashMap<String, String> headerInfoBlock,
StatisticsNew statistics, Filter filter) {
@ -127,12 +127,6 @@ public class Export {
FILE_HEADER_AL.add(I18N.get("exportTable.totalRelativeFrequency"));
if (filter.getCollocability().size() > 0){
for (Collocability c : filter.getCollocability()) {
FILE_HEADER_AL.add(c.toHeaderString());
}
}
for (Taxonomy key : taxonomyResults.keySet()) {
if(!key.equals(statistics.getCorpus().getTotal()) && num_taxonomy_frequencies.containsKey(key) && num_taxonomy_frequencies.get(key).longValue() > 0) {
FILE_HEADER_AL.add(I18N.get("exportTable.absoluteFrequency") + " [" + key.toString() + "]");
@ -141,6 +135,13 @@ public class Export {
}
}
if (filter.getCollocability().size() > 0){
for (Collocability c : filter.getCollocability()) {
FILE_HEADER_AL.add(c.toHeaderString());
}
}
if (filter.getWriteMsdAtTheEnd()) {
String msd = "";
int maxMsdLength = 0;
@ -280,14 +281,14 @@ public class Export {
dataEntry.add(e.getValue().toString());
dataEntry.add(formatNumberAsPercent((double) e.getValue() / num_selected_taxonomy_frequencies.get(statistics.getCorpus().getTotal())));
dataEntry.add(String.format("%.2f", ((double) e.getValue() * 1000000)/num_taxonomy_frequencies.get(statistics.getCorpus().getTotal()).longValue()));
dataEntry.add(formatNumberAsPercent((double) e.getValue() / num_selected_taxonomy_frequencies.get(statistics.getCorpus().getTotal()), statistics.getCorpus().getPunctuation()));
dataEntry.add(formatNumberForExport(((double) e.getValue() * 1000000)/num_taxonomy_frequencies.get(statistics.getCorpus().getTotal()).longValue(), statistics.getCorpus().getPunctuation()));
for (Taxonomy key : taxonomyResults.keySet()){
if(!key.equals(statistics.getCorpus().getTotal()) && num_taxonomy_frequencies.containsKey(key) && num_taxonomy_frequencies.get(key).longValue() > 0) {
AtomicLong frequency = taxonomyResults.get(key).get(e.getKey());
dataEntry.add(frequency.toString());
dataEntry.add(formatNumberAsPercent((double) frequency.get() / num_selected_taxonomy_frequencies.get(key)));
dataEntry.add(String.format("%.2f", ((double) frequency.get() * 1000000) / num_taxonomy_frequencies.get(key).longValue()));
dataEntry.add(formatNumberAsPercent((double) frequency.get() / num_selected_taxonomy_frequencies.get(key), statistics.getCorpus().getPunctuation()));
dataEntry.add(formatNumberForExport(((double) frequency.get() * 1000000) / num_taxonomy_frequencies.get(key).longValue(), statistics.getCorpus().getPunctuation()));
// dataEntry.add(formatNumberAsPercent((double) frequency.get() / statistics.getUniGramOccurrences()));
// dataEntry.add(String.format("%.2f", ((double) frequency.get() * 1000000) / statistics.getUniGramOccurrences()));
}
@ -296,7 +297,7 @@ public class Export {
if (filter.getCollocability().size() > 0){
for (Collocability c : filter.getCollocability()) {
dataEntry.add(statistics.getCollocability().get(c).get(e.getKey()));
dataEntry.add(formatNumberForLongExport(statistics.getCollocability().get(c).get(e.getKey()), statistics.getCorpus().getPunctuation()));
}
}
@ -371,66 +372,66 @@ public class Export {
return s;
}
public static String SetToCSV(String title, Object[][] result, File resultsPath, LinkedHashMap<String, String> headerInfoBlock) {
//Delimiter used in CSV file
String NEW_LINE_SEPARATOR = "\n";
//CSV file header
Object[] FILE_HEADER = {"word", "frequency", "percent"};
String fileName = "";
fileName = title.replace(": ", "-");
fileName = fileName.replace(" ", "_").concat(".csv");
fileName = resultsPath.toString().concat(File.separator).concat(fileName);
OutputStreamWriter fileWriter = null;
CSVPrinter csvFilePrinter = null;
//Create the CSVFormat object with "\n" as a record delimiter
CSVFormat csvFileFormat = CSVFormat.DEFAULT.withRecordSeparator(NEW_LINE_SEPARATOR).withDelimiter(';');
try {
//initialize FileWriter object
fileWriter = new OutputStreamWriter(new FileOutputStream(fileName), StandardCharsets.UTF_8);
//initialize CSVPrinter object
csvFilePrinter = new CSVPrinter(fileWriter, csvFileFormat);
// write info block
printHeaderInfo(csvFilePrinter, headerInfoBlock);
//Create CSV file header
csvFilePrinter.printRecord(FILE_HEADER);
for (Object[] resultEntry : result) {
List dataEntry = new ArrayList<>();
dataEntry.add(resultEntry[0]);
dataEntry.add(resultEntry[1]);
dataEntry.add(formatNumberAsPercent(resultEntry[2]));
csvFilePrinter.printRecord(dataEntry);
}
} catch (Exception e) {
System.out.println("Error in CsvFileWriter!");
e.printStackTrace();
} finally {
try {
if (fileWriter != null) {
fileWriter.flush();
fileWriter.close();
}
if (csvFilePrinter != null) {
csvFilePrinter.close();
}
} catch (IOException e) {
System.out.println("Error while flushing/closing fileWriter/csvPrinter!");
e.printStackTrace();
}
}
return fileName;
}
// public static String SetToCSV(String title, Object[][] result, File resultsPath, LinkedHashMap<String, String> headerInfoBlock) {
// //Delimiter used in CSV file
// String NEW_LINE_SEPARATOR = "\n";
//
// //CSV file header
// Object[] FILE_HEADER = {"word", "frequency", "percent"};
//
// String fileName = "";
//
// fileName = title.replace(": ", "-");
// fileName = fileName.replace(" ", "_").concat(".csv");
//
// fileName = resultsPath.toString().concat(File.separator).concat(fileName);
//
// OutputStreamWriter fileWriter = null;
// CSVPrinter csvFilePrinter = null;
//
// //Create the CSVFormat object with "\n" as a record delimiter
// CSVFormat csvFileFormat = CSVFormat.DEFAULT.withRecordSeparator(NEW_LINE_SEPARATOR).withDelimiter(';');
//
// try {
// //initialize FileWriter object
// fileWriter = new OutputStreamWriter(new FileOutputStream(fileName), StandardCharsets.UTF_8);
//
// //initialize CSVPrinter object
// csvFilePrinter = new CSVPrinter(fileWriter, csvFileFormat);
//
// // write info block
// printHeaderInfo(csvFilePrinter, headerInfoBlock);
//
// //Create CSV file header
// csvFilePrinter.printRecord(FILE_HEADER);
//
// for (Object[] resultEntry : result) {
// List dataEntry = new ArrayList<>();
// dataEntry.add(resultEntry[0]);
// dataEntry.add(resultEntry[1]);
// dataEntry.add(formatNumberAsPercent(resultEntry[2]), statistics.getCorpus().getPunctuation());
// csvFilePrinter.printRecord(dataEntry);
// }
// } catch (Exception e) {
// System.out.println("Error in CsvFileWriter!");
// e.printStackTrace();
// } finally {
// try {
// if (fileWriter != null) {
// fileWriter.flush();
// fileWriter.close();
// }
// if (csvFilePrinter != null) {
// csvFilePrinter.close();
// }
// } catch (IOException e) {
// System.out.println("Error while flushing/closing fileWriter/csvPrinter!");
// e.printStackTrace();
// }
// }
//
// return fileName;
// }
public static String nestedMapToCSV(String title, Map<WordLevelType, Map<String, Map<String, Long>>> result, File resultsPath, LinkedHashMap<String, String> headerInfoBlock) {
//Delimiter used in CSV file

View File

@ -54,8 +54,29 @@ public class Util {
return "- invalid input format -";
}
public static String formatNumberAsPercent(Object o) {
public static String formatNumberAsPercent(Object o, String punctuation) {
if(punctuation.equals("punctuation.COMMA")) {
return MessageFormat.format("{0,number,#.### %}", o).replace('.', ',');
} else {
return MessageFormat.format("{0,number,#.### %}", o);
}
}
public static String formatNumberForExport(Object o, String punctuation) {
if(punctuation.equals("punctuation.COMMA")) {
return MessageFormat.format("{0,number,#.##}", o).replace('.', ',');
} else {
return MessageFormat.format("{0,number,#.##}", o);
}
}
public static String formatNumberForLongExport(Object o, String punctuation) {
if(punctuation.equals("punctuation.COMMA")) {
return MessageFormat.format("{0,number,#.########}", o).replace('.', ',');
} else {
return MessageFormat.format("{0,number,#.########}", o);
}
}
private static boolean isInstanceOfInteger(Object o) {

View File

@ -57,6 +57,13 @@
<Image url="questionmark.png" backgroundLoading="true"/>
</ImageView>
<Label fx:id="punctuationL" layoutX="10.0" layoutY="340.0" prefHeight="25.0" text="Decimalno znamenje"/>
<ComboBox fx:id="punctuationCB" layoutX="225.0" layoutY="340.0" minWidth="140.0" prefWidth="140.0"
visibleRowCount="5"/>
<ImageView fx:id="punctuationI" layoutX="370.0" layoutY="347.5" pickOnBounds="true" preserveRatio="true">
<Image url="questionmark.png" backgroundLoading="true"/>
</ImageView>
<Hyperlink fx:id="helpH" alignment="TOP_LEFT" layoutX="710.0" layoutY="16.0"/>
<Button fx:id="changeLanguageB" layoutX="710.0" layoutY="40.0" mnemonicParsing="false" prefWidth="50.0"/>
</children>

View File

@ -17,18 +17,20 @@ tab.stringLevelTabNew2=Word sets
# corpus tab
label.setCorpusLocation=Set corpus location
button.setCorpusLocation=Set location
label.readHeaderInfo=Read info from headers
label.readHeaderInfo=Read tax. from corpus files
checkBox.readHeaderInfo=
label.chooseResultsLocation=Choose result location
button.chooseResultsLocation=Set location
label.selectReader=Select reader
label.outputName=Output file name
label.punctuation=Decimal separator
label.corpusTab.chooseCorpusLocationH=Select the folder which contains the corpus. The folder should only contain one corpus and should not contain files that are not part of the corpus.
label.corpusTab.readHeaderInfoH=If you select this option, the taxonomy will be read separately. This might take a while.
label.corpusTab.readHeaderInfoH=The program will read the taxonomy from corpus files. This might take a while.
label.corpusTab.chooseResultsLocationH=Choose result location
label.corpusTab.selectReaderH=Select reader
label.corpusTab.outputNameH=Output file name
label.corpusTab.punctuationH=Select decimal separator used in export files.
# character analysis tab
label.stringLength=Number of characters
@ -40,7 +42,7 @@ label.taxonomy=Filter by taxonomy
label.minimalOccurrences=Min. nr. occurrences
label.minimalTaxonomy=Min. nr. tax. branches
label.minimalRelFre=Min. rel. frequency
label.taxonomySetOperation=Filtriraj taksonomijo po
label.taxonomySetOperation=Filter taxonomy by
label.solarFilters=Selected filters:
string.lemma=lemma
string.word=word
@ -52,7 +54,7 @@ label.letter.msdH=Character strings will be counted only in words with the provi
label.letter.taxonomyH=Character strings will be counted only in selected text types.
label.letter.minimalOccurrencesH=Character strings with fewer occurrences will not be included in the output.
label.letter.minimalTaxonomyH=Character strings that occur in fewer taxonomy branches will not be included in the output.
label.letter.taxonomySetOperationH=Izpisuj iz besedil, ki ustrezajo vsaj eni od izbranih vej (unija) ali vsem izbranim vejam (presek)
label.letter.taxonomySetOperationH=Extract information from texts that fit into at least one (union) or all (intersection) of the selected branches.
# word part tab
label.alsoVisualize=Also split by
@ -101,8 +103,13 @@ label.wordSet.taxonomyH=Word sets will only be extracted from the selected taxon
label.wordSet.minimalOccurrencesH=Word sets with fewer occurrences will not be included in the output.
label.wordSet.minimalTaxonomyH=Word sets that occur in fewer taxonomy branches will not be included in the output.
# punctuations
punctuation.COMMA=comma (,)
punctuation.POINT=point (.)
# calculate for
calculateFor.WORD=word
calculateFor.LOWERCASE_WORD=lowercase word
calculateFor.NORMALIZED_WORD=normalized word
calculateFor.LEMMA=lemma
calculateFor.MORPHOSYNTACTIC_SPECS=morphosyntactic tag
@ -187,7 +194,7 @@ windowTitles.warning=Warning
windowTitles.confirmation=Confirmation
# export header translations
exportHeader.corpus=Corpus:
exportHeader.corpus=Reader:
exportHeader.date=Date:
exportHeader.executionTime=Execution time:
exportHeader.analysis=Analysis:
@ -212,6 +219,7 @@ exportHeader.msd=Morphosyntactic tag:
exportHeader.taxonomy=Filter by taxonomy:
exportHeader.minOccurrences=Min. nr. occurrences:
exportHeader.minTaxonomies=Min. nr. taxonomy branches:
exportHeader.minRelFre=Min. rel. frequency nr.:
exportHeader.additionalFilters=Additional filters:
exportHeader.yes=yes
exportHeader.no=no
@ -231,6 +239,7 @@ exportTable.relativeFrequency=Relative frequency
exportTable.msd=msd
# parts
exportTable.part.word=words:
exportTable.part.lowercaseWord=lowercase words:
exportTable.part.normalizedWord=normalized words:
exportTable.part.lemma=lemmas:
exportTable.part.msd=msd:
@ -239,6 +248,7 @@ exportTable.part.wordType=word type:
exportTable.part.letterSet=character set
exportTable.part.word2=word
exportTable.part.lowercaseWord2=lowercase word
exportTable.part.normalizedWord2=normalized word
exportTable.part.lemma2=lemma
exportTable.part.msd2=msd
@ -248,6 +258,7 @@ exportTable.part.wordType2=word type
exportTable.part.letterSet2=Share of total sum of all letter sets
exportTable.part.letterSet3=Letter set
exportTable.part.word3=Word
exportTable.part.lowercaseWord3=Lowercase word
exportTable.part.normalizedWord3=Normalized word
exportTable.part.lemma3=Lemma
exportTable.part.msd3=Msd

View File

@ -1,5 +1,5 @@
# general
window.title=Luščilnik
window.title=Korpusni luščilnik
hyperlink.help=Pomoč
button.language=EN
@ -17,18 +17,20 @@ tab.stringLevelTabNew2=Besedni nizi
# corpus tab
label.setCorpusLocation=Nastavi lokacijo korpusa
button.setCorpusLocation=Ponastavi
label.readHeaderInfo=Preberi info iz headerjev
label.readHeaderInfo=Preberi taks. iz korp. datotek
checkBox.readHeaderInfo=
label.chooseResultsLocation=Nastavi lokacijo rezultatov
label.chooseResultsLocation=Nastavi lokacijo izpisov
button.chooseResultsLocation=Ponastavi
label.selectReader=Izberi bralnik
label.outputName=Ime izhodne datoteke
label.punctuation=Decimalno znamenje
label.corpusTab.chooseCorpusLocationH=Izberite mapo, v kateri se nahaja korpus. Program izbrano mapo preišče rekurzivno, zato bodite pozorni, da ne izberete mape z več korpusi ali z mnogo datotekami, ki niso del korpusa.
label.corpusTab.readHeaderInfoH=Če izberete to opcijo, se bo iz korpusnih datotek prebrala razpoložljiva taksonomija oz. filtri. Ta operacija lahko traja dlje časa, sploh če je korpus združen v eni sami datoteki.
label.corpusTab.readHeaderInfoH=Program bo iz korpusnih datotek prebral taksonomijo. Ta operacija lahko traja dlje časa.
label.corpusTab.chooseResultsLocationH=Nastavi lokacijo rezultatov
label.corpusTab.selectReaderH=Izberi bralnik
label.corpusTab.outputNameH=Ime izhodne datoteke
label.corpusTab.punctuationH=Izberite željeno decimalno znamenje v izpisu.
# character analysis tab
label.stringLength=Dolžina znakovnih nizov
@ -101,8 +103,13 @@ label.wordSet.taxonomyH=Besedni nizi bodo izpisani samo iz izbranih taksonomskih
label.wordSet.minimalOccurrencesH=Besedni nizi, ki se pojavijo redkeje, ne bodo vključeni v izpis.
label.wordSet.minimalTaxonomyH=Besedni nizi, ki so prisotni v manj vejah, ne bodo vključeni v izpis.
# punctuations
punctuation.COMMA=vejica (,)
punctuation.POINT=pika (.)
# calculate for
calculateFor.WORD=oblike
calculateFor.LOWERCASE_WORD=oblike z malimi črkami
calculateFor.NORMALIZED_WORD=normalizirane oblike
calculateFor.LEMMA=leme
calculateFor.MORPHOSYNTACTIC_SPECS=oblikoskladenjske oznake
@ -187,7 +194,7 @@ windowTitles.warning=Opozorilo
windowTitles.confirmation=Potrdilo
# export header translations
exportHeader.corpus=Korpus:
exportHeader.corpus=Bralnik:
exportHeader.date=Datum:
exportHeader.executionTime=Čas izvajanja:
exportHeader.analysis=Analiza:
@ -212,6 +219,7 @@ exportHeader.msd=Oblikoskladenjska oznaka:
exportHeader.taxonomy=Filtriranje po taksonomiji:
exportHeader.minOccurrences=Min. št. pojavitev:
exportHeader.minTaxonomies=Min. št. taksonomskih vej:
exportHeader.minRelFre=Min. rel. pogostost:
exportHeader.additionalFilters=Dodatni filtri:
exportHeader.yes=da
exportHeader.no=ne
@ -231,6 +239,7 @@ exportTable.relativeFrequency=Relativna pogostost
exportTable.msd=msd
# parts
exportTable.part.word=oblik:
exportTable.part.lowercaseWord=oblik z malimi črkami:
exportTable.part.normalizedWord=normaliziranih oblik:
exportTable.part.lemma=lem:
exportTable.part.msd=oblikoskladenjskih oznak:
@ -239,6 +248,7 @@ exportTable.part.wordType=besednih vrst:
exportTable.part.letterSet=znakovnega niza
exportTable.part.word2=oblike
exportTable.part.lowercaseWord2=oblike z malimi črkami
exportTable.part.normalizedWord2=normalizirane oblike
exportTable.part.lemma2=leme
exportTable.part.msd2=oblikoskladenjske oznake
@ -248,6 +258,7 @@ exportTable.part.wordType2=besedne vrste
exportTable.part.letterSet2=Delež glede na skupno vsoto vseh najdenih znakovnih nizov
exportTable.part.letterSet3=Znakovni niz
exportTable.part.word3=Oblika
exportTable.part.lowercaseWord3=Oblika z malimi črkami
exportTable.part.normalizedWord3=Normalizirana oblika
exportTable.part.lemma3=Lema
exportTable.part.msd3=Oblikoskladenjska oznaka