modifying frames api

This commit is contained in:
voje 2019-03-28 19:17:45 +01:00
parent d84ad9e163
commit 1f83f96267
10 changed files with 529 additions and 66 deletions

View File

@ -48,6 +48,7 @@ python-env:
# inside the container, install our packages
python-env-install:
pip3 install -e src/pkg/cjvt-corpusparser/.
pip3 install -e src/pkg/valency/.
# from inside python-env container:
data/samples:

View File

@ -44,7 +44,9 @@ If all goes well, we should be able to inspect the database, filled with corpora
### Flask backend (1 container)
Relies heavily on the database. Set that up first.
```bash
# $ make backend=dev # development
$ make python-env
# $ make backend-dev # development
$ make backend-prod
```

View File

@ -73,7 +73,7 @@ class Slot():
# It consists of different tokens.
def __init__(self, functor, tids=None, count=None):
self.functor = functor
self.tids = tids or []
self.tids = tids or [] # combining multiple sentences vertically
self.count = count or 1
def to_string(self):

View File

@ -10,6 +10,9 @@ log = logging.getLogger(__name__)
SENSE_UNDEFINED = "nedefinirano"
## TIDI: use frame.py
## TODO: build a list of [Frame] with lists of [Slot]
def sorted_by_len_tids(frames):
return sorted(

View File

@ -1,6 +1,8 @@
# -*- coding: utf-8 -*-
from flask import Flask, render_template, request, url_for, redirect
from valency import Frame, Slot
from valency.reduce_functions import reduce_functions
"""
from valency import k_utils
@ -26,12 +28,19 @@ from pathlib import Path
from pymongo import MongoClient
import argparse
# some db collections
USERS_COLL = "users"
TOKENS_COLL = "usertokens"
SENSES_COLL = "senses"
SENSEMAP_COLL = "sensemap"
# pre-generated data (gui leftside word index)
CORPORA = ["ssj", "kres"]
app_index = {c: {} for c in CORPORA}
log = logging.getLogger(__name__)
app = Flask(__name__)
app_index = {c: {} for c in CORPORA}
# when running vuejs via webpack
# CORS(app)
@ -41,23 +50,7 @@ app_index = {c: {} for c in CORPORA}
CORS(app)
# for testing functions
@app.route("/test_dev")
def test_dev():
ret = vallex.test_dev()
return(str(ret) or "edit val_struct.py: test_dev()")
@app.route("/")
def index():
return(render_template("index.html"))
@app.route("/home", defaults={"pathname": ""})
@app.route("/home/<path:pathname>")
def home(pathname):
return redirect(url_for("index"), code=302)
# INDEX SELECTION -------------------.
@app.route("/api/words/<corpus>")
def api_words(corpus):
@ -69,10 +62,13 @@ def api_words(corpus):
def api_functors(corpus):
return json.dumps(app_index[corpus]["functors"])
# INDEX SELECTION -------------------^
# AUTH ------------------------------.
@app.route("/api/register", methods=["POST"])
def api_register():
USERS_COLL = "v2_users"
b = request.get_data()
data = json.loads(b.decode())
username = data["username"]
@ -84,7 +80,7 @@ def api_register():
email == ""
):
return "ERR"
existing = list(vallex.db[USERS_COLL].find({
existing = list(valdb[USERS_COLL].find({
"$or": [{"username": username}, {"email": email}]
}))
if len(existing) > 0:
@ -96,21 +92,19 @@ def api_register():
"email": hashlib.sha256(
email.encode("utf-8")).hexdigest()
}
vallex.db[USERS_COLL].insert(entry)
valdb[USERS_COLL].insert(entry)
return "OK"
@app.route("/api/login", methods=["POST"])
def api_login():
USERS_COLL = "v2_users"
TOKENS_COLL = "v2_user_tokens"
b = request.get_data()
data = json.loads(b.decode())
username = data["username"]
password = data["password"]
hpass = hashlib.sha256(password.encode("utf-8")).hexdigest()
db_user = list(vallex.db[USERS_COLL].find({
db_user = list(valdb[USERS_COLL].find({
"username": username,
"hpass": hpass
}))
@ -124,7 +118,7 @@ def api_login():
"date": datetime.datetime.utcnow(),
"token": token
}
vallex.db[TOKENS_COLL].update(
valdb[TOKENS_COLL].update(
{"username": token_entry["username"]},
token_entry,
upsert=True
@ -167,7 +161,7 @@ def api_new_pass():
username = data["username"]
email = data["email"]
hemail = hashlib.sha256(email.encode("utf-8")).hexdigest()
db_res = list(vallex.db.v2_users.find({
db_res = list(valdb[USERS_COLL].find({
"username": username,
"email": hemail
}))
@ -179,7 +173,7 @@ def api_new_pass():
string.ascii_letters + string.digits) for i in range(10)])
# update locally
hpass = hashlib.sha256(new_pass.encode("utf-8")).hexdigest()
vallex.db.v2_users.update(
valdb[USERS_COLL].update(
{
"username": username,
"email": hemail
@ -193,6 +187,39 @@ def api_new_pass():
return json.dumps({"confirmation": True})
def token_to_username(token):
key = {
"token": token
}
res = list(valdb[TOKENS_COLL].find(key))
if len(res) != 1:
return None
username = res[0]["username"]
# update deletion interval
valdb[TOKENS_COLL].update(
key, {"$set": {"date": datetime.datetime.utcnow()}})
return username
@app.route("/api/token", methods=["POST"])
def api_token():
# check if token is valid
b = request.get_data()
data = json.loads(b.decode())
token = data.get("token")
# user = data.get("user")
user = token_to_username(token)
confirm = (user is not None)
return json.dumps({
"confirmation": confirm,
"username": user
})
# AUTH ------------------------------^
# FRAMES ----------------------------.
def prepare_frames(ret_frames):
# append sentences
for frame in ret_frames:
@ -218,19 +245,21 @@ def prepare_frames(ret_frames):
return json.dumps(json_ret)
@app.route("/api/frames")
# input: hw, reduct_function
@app.route("/api/hw-frames")
def api_get_frames():
hw = request.args.get("hw")
if hw is None:
return json.dumps({"error": "Headword not found."})
return json.dumps({"error": "Required argument: hw (headword)."})
rf_name = request.args.get("rf", "reduce_0") # 2nd is default
RF = reduce_functions[rf_name]["f"]
entry = vallex.entries[hw]
entry = vallex.entries[hw] # TODO hw -> [Frame,]
ret_frames = RF(entry.raw_frames, vallex)
return prepare_frames(ret_frames)
# input: functor, reduce_function
@app.route("/api/functor-frames")
def api_get_functor_frames():
functor = request.args.get("functor")
@ -238,49 +267,23 @@ def api_get_functor_frames():
return json.dumps({"error": "Missing argument: functor."})
rf_name = request.args.get("rf", "reduce_0") # 2nd is default
RF = reduce_functions[rf_name]["f"]
raw_frames = vallex.functors_index[functor]
raw_frames = vallex.functors_index[functor] # TODO
ret_frames = RF(raw_frames, vallex)
return prepare_frames(ret_frames)
def token_to_username(token):
COLLNAME = "v2_user_tokens"
key = {
"token": token
}
res = list(vallex.db[COLLNAME].find(key))
if len(res) != 1:
return None
username = res[0]["username"]
# update deletion interval
vallex.db[COLLNAME].update(
key, {"$set": {"date": datetime.datetime.utcnow()}})
return username
# FRAMES ----------------------------^
@app.route("/api/token", methods=["POST"])
def api_token():
# check if token is valid
b = request.get_data()
data = json.loads(b.decode())
token = data.get("token")
# user = data.get("user")
user = token_to_username(token)
confirm = (user is not None)
return json.dumps({
"confirmation": confirm,
"username": user
})
# SENSES ----------------------------.
@app.route("/api/senses/get")
def api_senses_get():
# returns senses and mapping for hw
hw = request.args.get("hw")
senses = list(vallex.db["v2_senses"].find({
senses = list(valdb[SENSES_COLL].find({
"hw": hw
}))
sense_map_query = list(vallex.db["v2_sense_map"].find({
sense_map_query = list(valdb[SENSEMAP_COLL].find({
"hw": hw
}))
# aggregation by max date possible on DB side
@ -358,7 +361,7 @@ def api_senses_update():
id_map[frontend_sense_id] = new_sense_id
# insert into db
vallex.db["v2_senses"].insert(ns)
valdb[SENSES_COLL].insert(ns)
# replace tmp_id with mongo's _id
for ssj_id, el in sense_map.items():
@ -373,9 +376,14 @@ def api_senses_update():
"date": datetime.datetime.utcnow()
}
# vallex.db["v2_sense_map"].update(key, data, upsert=True)
vallex.db["v2_sense_map"].insert(data)
valdb[SENSEMAP_COLL].insert(data)
return "OK"
# SENSES ----------------------------^
# APP PREFLIGHT ---------------------.
def prepare_db():
def helper_tid_to_token(tid, tokens):
for t in tokens:
@ -384,7 +392,7 @@ def prepare_db():
return None
# update entries (add headwords and fuctors for indexing)
for corpus in ["ssj", "kres"]:
for corpus in CORPORA:
for e in valdb[corpus].find({}):
if e["srl_links"] is None:
continue
@ -435,6 +443,8 @@ def prepare_db():
functors = sorted(functors, key=lambda x: x[0])
app_index[corpus]["functors"] = functors
# APP PREFLIGHT ---------------------^
if __name__ == "__main__":
print("Starting app.py main()")

12
src/pkg/valency/setup.py Normal file
View File

@ -0,0 +1,12 @@
from setuptools import setup
setup(
name='valency',
version='0.1.1',
description='Objects and functions for handling valency frames.',
author='Kristjan Voje',
author_email='kristjan.voje@gmail.com',
license='MIT',
packages=['valency'],
install_requires=[],
)

View File

@ -0,0 +1,96 @@
import logging
log = logging.getLogger(__name__)
class Frame():
def __init__(self, tids, deep_links=None, slots=None, hw=None):
self.hw = hw
self.tids = tids # list of tokens with the same hw_lemma
# Each tid = "S123.t123";
# you can get sentence with vallex.get_sentence(S123)
self.slots = []
if slots is None:
self.slots = self.init_slots(deep_links)
else:
self.slots = slots
self.sense_info = {}
self.sentences = None # Used for passing to view in app.py, get_frames
self.aggr_sent = None # Dictionary { hw: self.sentences idx }
def to_json(self):
ret = {
"hw": self.hw,
"tids": self.tids,
"slots": [slot.to_json() for slot in self.slots],
"sentences": self.sentences,
"aggr_sent": self.aggr_sent,
"sense_info": self.sense_info
}
return ret
def init_slots(self, deep):
slots = []
for link in deep:
slots.append(Slot(
functor=link["functor"],
tids=[link["to"]]
))
return slots
def sort_slots(self):
# ACT, PAT, alphabetically
srt1 = [
x for x in self.slots
if (x.functor == "ACT" or
x.functor == "PAT")
]
srt1 = sorted(srt1, key=lambda x: x.functor)
srt2 = [
x for x in self.slots
if (x.functor != "ACT" and
x.functor != "PAT")
]
srt2 = sorted(srt2, key=lambda x: x.functor)
self.slots = (srt1 + srt2)
def to_string(self):
ret = "Frame:\n"
ret += "sense_info: {}\n".format(str(self.sense_info))
ret += "tids: ["
for t in self.tids:
ret += (str(t) + ", ")
ret += "]\n"
if self.slots is not None:
ret += "slots:\n"
for sl in self.slots:
ret += (sl.to_string() + "\n")
return ret
class Slot():
# Each slot is identified by its functor (ACT, PAT, ...)
# It consists of different tokens.
def __init__(self, functor, tids=None, count=None):
self.functor = functor
self.tids = tids or [] # combining multiple sentences vertically
self.count = count or 1
def to_string(self):
ret = "---- Slot:\n"
ret += "functor: {}\n".format(self.functor)
ret += "tids: ["
for t in self.tids:
ret += (str(t) + ", ")
ret += "]\n"
ret += "]\n"
ret += "----\n"
return ret
def to_json(self):
ret = {
"functor": self.functor,
"tids": self.tids,
"count": self.count
}
return ret

View File

@ -0,0 +1 @@
from valency.Frame import Frame, Slot

View File

@ -0,0 +1,96 @@
import logging
log = logging.getLogger(__name__)
class Frame():
def __init__(self, tids, deep_links=None, slots=None, hw=None):
self.hw = hw
self.tids = tids # list of tokens with the same hw_lemma
# Each tid = "S123.t123";
# you can get sentence with vallex.get_sentence(S123)
self.slots = []
if slots is None:
self.slots = self.init_slots(deep_links)
else:
self.slots = slots
self.sense_info = {}
self.sentences = None # Used for passing to view in app.py, get_frames
self.aggr_sent = None # Dictionary { hw: self.sentences idx }
def to_json(self):
ret = {
"hw": self.hw,
"tids": self.tids,
"slots": [slot.to_json() for slot in self.slots],
"sentences": self.sentences,
"aggr_sent": self.aggr_sent,
"sense_info": self.sense_info
}
return ret
def init_slots(self, deep):
slots = []
for link in deep:
slots.append(Slot(
functor=link["functor"],
tids=[link["to"]]
))
return slots
def sort_slots(self):
# ACT, PAT, alphabetically
srt1 = [
x for x in self.slots
if (x.functor == "ACT" or
x.functor == "PAT")
]
srt1 = sorted(srt1, key=lambda x: x.functor)
srt2 = [
x for x in self.slots
if (x.functor != "ACT" and
x.functor != "PAT")
]
srt2 = sorted(srt2, key=lambda x: x.functor)
self.slots = (srt1 + srt2)
def to_string(self):
ret = "Frame:\n"
ret += "sense_info: {}\n".format(str(self.sense_info))
ret += "tids: ["
for t in self.tids:
ret += (str(t) + ", ")
ret += "]\n"
if self.slots is not None:
ret += "slots:\n"
for sl in self.slots:
ret += (sl.to_string() + "\n")
return ret
class Slot():
# Each slot is identified by its functor (ACT, PAT, ...)
# It consists of different tokens.
def __init__(self, functor, tids=None, count=None):
self.functor = functor
self.tids = tids or [] # combining multiple sentences vertically
self.count = count or 1
def to_string(self):
ret = "---- Slot:\n"
ret += "functor: {}\n".format(self.functor)
ret += "tids: ["
for t in self.tids:
ret += (str(t) + ", ")
ret += "]\n"
ret += "]\n"
ret += "----\n"
return ret
def to_json(self):
ret = {
"functor": self.functor,
"tids": self.tids,
"count": self.count
}
return ret

View File

@ -0,0 +1,242 @@
# Reduction function for frames.
# Input: list of Frame objects, output: list of Frame objects.
# App uses reduce_0, 1 and 5
from valency import Frame, Slot
from copy import deepcopy as DC
import logging
log = logging.getLogger(__name__)
SENSE_UNDEFINED = "nedefinirano"
## TIDI: use frame.py
## TODO: build a list of [Frame] with lists of [Slot]
def sorted_by_len_tids(frames):
return sorted(
frames,
key=lambda x: len(x.tids),
reverse=True
)
def reduce_0(frames, vallex=None):
# new request... frames should be sorded by
# functors list (basically reduce_1, just each
# sentence gets its own frame)
r1_frames = reduce_1(frames)
sorting_strings = []
separated_frames = []
for frame in r1_frames:
for tid in frame.tids:
tmp_frame = DC(frame)
tmp_frame.tids = [tid]
separated_frames.append(tmp_frame)
sorting_strings.append("".join(
[slot.functor for slot in tmp_frame.slots]
))
permutation = [x for _, x in sorted(
zip(sorting_strings, range(len(sorting_strings))))]
sorted_sep_frames = [separated_frames[i] for i in permutation]
return sorted_sep_frames
def reduce_1(frames, vallex=None):
# Combine frames with the same set of functors.
# The order of functors is not important.
frame_sets = [] # [set of functors, list of frames]
for frame in frames:
functors = [slot.functor for slot in frame.slots]
for fs in frame_sets:
if set(functors) == set(fs[0]):
fs[1].append(frame)
break
else:
# Python for else -> fires if loop has ended.
frame_sets.append([functors, [frame]])
ret_frames = []
for fs in frame_sets:
tids = []
slots = {}
# All possible slots in this frame.
for functor in fs[0]:
slots[functor] = Slot(functor=functor)
# Reduce slots from all frames. (Merge ACT from all frames, ...)
for frame in fs[1]:
tids += frame.tids
for sl in frame.slots:
slots[sl.functor].tids += sl.tids
slots_list = []
for k, e in slots.items():
slots_list.append(e)
rf = Frame(tids=tids, slots=slots_list)
rf.sort_slots()
ret_frames.append(rf)
return sorted_by_len_tids(ret_frames)
def reduce_3(raw_frames, vallex):
# sskj simple lesk ids
ssj_ids = [frame.tids[0] for frame in raw_frames]
db_results = list(vallex.db.sskj_simple_lesk.find(
{"ssj_id": {"$in": ssj_ids}}))
id_map = {}
for entry in db_results:
id_map.update({entry["ssj_id"]: {
"sense_id": entry.get("sense_id"),
"sense_desc": entry.get("sense_desc")
}})
return frames_from_sense_ids(raw_frames, id_map)
def reduce_4(raw_frames, vallex):
# kmeans ids
ssj_ids = [frame.tids[0] for frame in raw_frames]
db_results = list(vallex.db.kmeans.find(
{"ssj_id": {"$in": ssj_ids}}))
id_map = {}
for entry in db_results:
id_map.update({entry["ssj_id"]: {
"sense_id": entry["sense_id"]
}})
return frames_from_sense_ids(raw_frames, id_map)
def reduce_5(raw_frames, vallex):
USER_SENSE_COLL = "v2_sense_map"
headword = raw_frames[0].hw
ssj_ids_full = [frame.tids[0] for frame in raw_frames]
# v2_sense_map stores only sentence half of ssj_id
ssj_ids = [".".join(ssj_id.split(".")[:-1]) for ssj_id in ssj_ids_full]
db_results = list(vallex.db[USER_SENSE_COLL].find({
"ssj_id": {"$in": ssj_ids},
"hw": headword,
}))
id_map = {}
for entry in db_results:
id_map[entry["ssj_id"]] = entry["sense_id"]
ret_frames = frames_from_sense_ids(raw_frames, id_map)
# sort: frames with senses to top
senses_undefined = []
senses_defined = []
for frame in ret_frames:
if frame.sense_info["sense_id"] == SENSE_UNDEFINED:
senses_undefined.append(frame)
else:
senses_defined.append(frame)
ret_frames = senses_defined + senses_undefined
return ret_frames
def frames_from_sense_ids(raw_frames, id_map):
# id map = dict {
# ssj_id: sense_id
# }
# id_dict = dict {
# sense_id: [frame, ...]
# }
id_dict = {}
for frame in raw_frames:
# long version ssj_id (S123.t12)
frame_ssj_id = frame.tids[0]
frame_sense_id = id_map.get(frame_ssj_id)
if frame_sense_id is None:
# try short version ssj_id (S123)
frame_ssj_id = ".".join(frame_ssj_id.split(".")[:-1])
frame_sense_id = id_map.get(frame_ssj_id)
# set default if sense_id not found
if frame_sense_id is None:
frame_sense_id = SENSE_UNDEFINED
"""
sense_id = id_map.get(frame.tids[0])
if sense_id is not None:
sense_id = sense_id.get("sense_id")
else:
sense_id = "nedefinirano"
"""
if frame_sense_id not in id_dict:
id_dict[frame_sense_id] = []
id_dict[frame_sense_id].append(DC(frame))
ret_frames = []
for sense_id, frames in id_dict.items():
tids = []
reduced_slots = []
for frame in frames:
tids.extend(frame.tids)
for slot in frame.slots:
# if functor not in reduced slots,
# add new slot; else increase count
for rslot in reduced_slots:
if slot.functor == rslot.functor:
rslot.count += 1
rslot.tids.extend(slot.tids)
break
else:
# in case for loop didn't match a slot
reduced_slots.append(Slot(
functor=slot.functor,
tids=slot.tids,
count=1
))
reduced_frame = Frame(tids, slots=reduced_slots)
id_map_entry = (
id_map.get(tids[0]) or
id_map.get(".".join(tids[0].split(".")[:-1]))
)
if id_map_entry is None:
reduced_frame.sense_info = {
"sense_id": SENSE_UNDEFINED,
}
else:
reduced_frame.sense_info = {
"sense_id": id_map_entry
}
reduced_frame.sort_slots()
ret_frames.append(reduced_frame)
return ret_frames
reduce_functions = {
"reduce_0": {
"f": reduce_0,
"desc":
"Vsaka pojavitev glagola dobi svoj stavčni vzorec.",
"simple_name": "posamezni stavki"
},
"reduce_1": {
"f": reduce_1,
"desc":
"Združevanje stavčnih vzorcev z enako skupino udeleženskih vlog.",
"simple_name": "združeni stavki"
},
"reduce_3": {
"f": reduce_3,
"desc":
"Združevanje stavčnih vzorcev na osnovi pomenov povedi v SSKJ. "
"Pomeni so dodeljeni s pomočjo algoritma Simple Lesk.",
"simple_name": "SSKJ_pomeni"
},
"reduce_4": {
"f": reduce_4,
"desc":
"Združevanje stavčnih vzorcev na osnovi pomenov povedi "
"s pomočjo algoritma K-Means. Število predvidenih pomenov "
"podano na osnovi SSKJ.",
"simple_name": "KMeans_pomeni"
},
"reduce_5": {
"f": reduce_5,
"desc":
"Uporabniško dodeljeni pomeni povedi.",
"simple_name": "po meri"
}
}