scripts | ||
structure_assignment | ||
.gitignore | ||
README.md | ||
requirements.txt | ||
setup.py |
Structure assignment pipeline
Pipeline for parsing a list of arbitrary Slovene strings and assigning each to a syntactic structure in the DDD database, generating provisional new structures if necessary.
Installation
Installation requires the CLASSLA standard_jos models:
pip install .
python -c "import classla; classla.download('sl', dir='resources/classla', type='standard_jos')"
The classla directory does not necessarily need to be placed under resources/, but the wrapper script scripts/process.py assumes that it is.
Usage
The main script is scripts/process.py. There are several modes ( identified via the -part parameter), depending on whether you want to run the whole pipeline from start to finish (daring!), or with manual intervention (of the parse) in between. XML validation is also provided separately.
strings_to_parse
The input is a file of Slovene strings (one string per line). The script runs the python obeliks tokeniser on the input, tweaks the conllu output a little, and runs JOS-configured classla to parse the output. It then translates the JOS tags (msds and dependencies) from English to Slovene and converts the output to TEI XML. Example:
$ python process.py -mode strings_to_parse -infile /tmp/strings.txt -outfile /tmp/parsed.xml
parse_to_dictionary
The input should be a TEI XML file (in the same particular format as the output of strings_to_parse) and an xml file of structure specifications. The script first uses the MWE extraction script to find and assign all matches for collocation structures. For units without such matches, it then finds (creating, if necessary) and assigns single-component or other structures. Finally the TEI is converted to CJVT dictionary XML format. Example:
$ python process.py -mode parse_to_dictionary -infile /tmp/parsed.xml -instructs /tmp/structures_old.xml -outfile /tmp/dictionary.xml -outstructs /tmp/structures_new.xml
strings_to_dictionary
Combines strings_to_parse in parse_to_dictionary into one call (whereby you forfeit the chance to fix potential parse errors in between). Example:
$ python process.py -mode strings_to_dictionary -infile /tmp/strings.txt -instructs /tmp/structures_old.xml -outfile /tmp/dictionary.xml -outstructs /tmp/structures_new.xml
all
Same as strings_to_dictionary, but also validates the dictionary and structures outputs, just in case.
$ python process.py -mode all -infile /tmp/strings.txt -instructs /tmp/structures_old.xml -outfile /tmp/dictionary.xml -outstructs /tmp/structures_new.xml
REST API
The package provides a REST API with endpoints roughly mirroring the process.py modes. For most calls, POST is needed, so that input structures can be easily provided. If processing resulted in temporary new structures, their number is recorded in @new_structures.
Example curl calls:
$ curl -k https://proc1.cjvt.si/structures/strings_to_parse?string=velika%20miza
$ curl -k -X POST -F strings=@/tmp/strings.txt https://proc1.cjvt.si/structures/strings_to_parse
$ curl -k -X POST -F parsed=@/tmp/parse.xml -F structures=@/tmp/structures.xml https://proc1.cjvt.si/structures/parse_to_dictionary
$ curl -k -X POST -F strings=@/tmp/strings.txt -F structures=@/tmp/structures.xml https://proc1.cjvt.si/structures/strings_to_dictionary
Note
Note that any new structures generated are given temporary ids (@tempId), because they only get real ids once they are approved and added to the DDD database. That is normally done via the django import_structures.py script in the ddd_core repository, which replaces the temporary ids in the structure specifications and updates the ids in the dictionary file.