svala-scripts/svala2tei_solar.py
2023-08-17 08:44:59 +02:00

1227 lines
55 KiB
Python
Executable File

import argparse
import json
import logging
import os
import pickle
import shutil
import time
from xml.etree import ElementTree
from conllu import TokenList
import conllu
import classla
import copy
from lxml import etree
from src.create_tei import construct_sentence_from_list, \
construct_paragraph_from_list, TeiDocument, build_tei_etrees, build_links, build_complete_tei, convert_bibl
logging.basicConfig(level=logging.INFO)
def add_source(svala_i, source_i, sentence_string_id_split, source, el):
source_id = "s" + svala_i
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{source_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
source.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'id': source_token_id,
'space_after': False, 'svala_id': source_id})
def add_target(svala_i, target_i, sentence_string_id_split, target, el):
target_id = "t" + svala_i
target_token_id = f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{target_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
target.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'id': target_token_id,
'space_after': False, 'svala_id': target_id})
def add_edges(source_id, target_id, svala_data, edges, source_token_id, target_token_id):
edge_id = "e-" + source_id + "-" + target_id
labels = svala_data['edges'][edge_id]['labels']
edges.append({'source_ids': [source_token_id], 'target_ids': [target_token_id], 'labels': labels})
def create_edges_list(target_ids, links_ids_mapper):
target_edges = []
target_edges_set = []
for target_sentence in target_ids:
target_sentence_edges = []
for target_id in target_sentence:
target_sentence_edges.extend(links_ids_mapper[target_id])
target_edges.append(target_sentence_edges)
target_edges_set.append(set(target_sentence_edges))
return target_edges, target_edges_set
SKIP_IDS = ['solar2284s.1.1.1']
def create_edges(svala_data, source_par, target_par):
if source_par and source_par[0]:
if source_par[0][0]['id'] in SKIP_IDS:
return []
# print(source_par[0][0]['id'])
# if source_par[0][0]['id'] == 'solar17s.6.3.1':
# print('pause!')
# if target_par and target_par[0]:
# print(target_par[0][0]['id'])
# if target_par[0][0]['id'] == 'solar2150t.4.1.1':
# print('pause!')
source_mapper = {el['svala_id']: el['id'] for source in source_par for el in source}
target_mapper = {el['svala_id']: el['id'] for target in target_par for el in target}
source_ids = [[el['svala_id'] for el in source] for source in source_par]
target_ids = [[el['svala_id'] for el in target] for target in target_par]
source_sentence_ids = [set([el['svala_id'] for el in source]) for source in source_par]
target_sentence_ids = [set([el['svala_id'] for el in target]) for target in target_par]
# create links to ids mapper
links_ids_mapper = {}
edges_of_one_type = set()
# delete empty edge
if 'e-' in svala_data['edges']:
del (svala_data['edges']['e-'])
for k, v in svala_data['edges'].items():
has_source = False
has_target = False
for el in v['ids']:
# create edges of one type
if el[0] == 's':
has_source = True
if el[0] == 't':
has_target = True
# create links_ids_mapper
if el not in links_ids_mapper:
links_ids_mapper[el] = []
links_ids_mapper[el].append(k)
if not has_source or not has_target or (len(svala_data['source']) == 1 and svala_data['source'][0]['text'] == ' ') \
or (len(svala_data['target']) == 1 and svala_data['target'][0]['text'] == ' '):
edges_of_one_type.add(k)
# delete edge with space
save_deleted_edges = {}
if len(svala_data['source']) == 1 and svala_data['source'][0]['text'] == ' ':
for edg in links_ids_mapper[svala_data['source'][0]['id']]:
save_deleted_edges[edg] = svala_data['edges'][edg]
del (svala_data['edges'][edg])
del (links_ids_mapper[svala_data['source'][0]['id']])
if len(svala_data['target']) == 1 and svala_data['target'][0]['text'] == ' ':
for edg in links_ids_mapper[svala_data['target'][0]['id']]:
save_deleted_edges[edg] = svala_data['edges'][edg]
del (svala_data['edges'][edg])
del (links_ids_mapper[svala_data['target'][0]['id']])
# create edge order
edges_order = []
edges_processed = set()
active_target_sentence_i = 0
# create target edges
target_edges, target_edges_set = create_edges_list(target_ids, links_ids_mapper)
source_edges, source_edges_set = create_edges_list(source_ids, links_ids_mapper)
last_target_edge = ''
for active_source_sentence_i, active_source_sentence in enumerate(source_edges):
for source_edge in active_source_sentence:
# print(source_edge)
# if 'e-s7-t8' == source_edge:
# print('aaa')
if source_edge in edges_of_one_type:
if source_edge not in edges_processed:
edges_order.append(source_edge)
edges_processed.add(source_edge)
elif target_edges_set and source_edge in target_edges_set[active_target_sentence_i]:
# if 'e-s119-t119' == source_edge:
# print('aaa')
if source_edge not in edges_processed:
edges_order.append(source_edge)
edges_processed.add(source_edge)
last_target_edge = source_edge
# when source is connected to two targets
elif source_edge not in target_edges_set[active_target_sentence_i]:
# add missing edges from target
while source_edge not in target_edges_set[active_target_sentence_i]:
for target_edge in target_edges[active_target_sentence_i]:
if target_edge in edges_of_one_type:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
last_target_edge = target_edge
active_target_sentence_i += 1
if source_edge in target_edges_set[active_target_sentence_i]:
if source_edge not in edges_processed:
edges_order.append(source_edge)
edges_processed.add(source_edge)
else:
raise 'Impossible!!!'
if not target_edges_set or not target_edges_set[0] or active_target_sentence_i >= len(target_edges):
continue
if len(target_edges[active_target_sentence_i]) == 0:
active_target_sentence_i += 1
continue
if last_target_edge == target_edges[active_target_sentence_i][-1] or (len(target_edges[active_target_sentence_i]) > 1 and last_target_edge == target_edges[active_target_sentence_i][-2] and (target_edges[active_target_sentence_i][-1] in edges_of_one_type or (target_edges[active_target_sentence_i][-1] not in edges_of_one_type and target_edges[active_target_sentence_i][-1] in source_edges_set[active_source_sentence_i]))):
for target_edge in target_edges[active_target_sentence_i]:
if target_edge in edges_of_one_type:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
last_target_edge = target_edge
active_target_sentence_i += 1
continue
target_edge_in_next_source_edge_sentence = False
for target_edge in target_edges[active_target_sentence_i]:
if active_source_sentence_i + 1 < len(source_edges_set) and target_edge in source_edges_set[active_source_sentence_i + 1]:
target_edge_in_next_source_edge_sentence = True
break
if target_edge_in_next_source_edge_sentence:
pass
elif not target_edge_in_next_source_edge_sentence:
target_edge_in_next_source_edge_sentence = False
while not target_edge_in_next_source_edge_sentence:
# if active_target_sentence_i >= len(target_edges_set):
# break
for target_edge in target_edges[active_target_sentence_i]:
if target_edge in edges_of_one_type:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
last_target_edge = target_edge
# if there is no next source sentence
if active_source_sentence_i + 1 >= len(source_edges_set):
target_edge_in_next_source_edge_sentence = True
# if last_target_edge only in target stop regularly
if last_target_edge == target_edges[active_target_sentence_i][-1]:
target_edge_in_next_source_edge_sentence = True
# test if target_edge in next source
for target_edge in target_edges[active_target_sentence_i]:
if active_source_sentence_i + 1 < len(source_edges_set) and target_edge in source_edges_set[
active_source_sentence_i + 1]:
target_edge_in_next_source_edge_sentence = True
break
active_target_sentence_i += 1
if not source_edges:
for active_target_sentence in target_edges:
for target_edge in active_target_sentence:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
# # DEBUG stuff
# for edge_order in edges_order:
# if edges_order.count(edge_order) > 1:
# # if edge_order not in a:
# print(f'ERROR {edge_order}')
#
# for edge_order in edges_order:
# if edge_order not in svala_data['edges']:
# print(f'ERROR {edge_order}')
#
# for key in svala_data['edges'].keys():
# if key not in edges_order:
# print(f'ERROR {key}')
#
# a = len(svala_data['edges'])
# b = len(edges_order)
if len(svala_data['edges']) != len(edges_order):
for k, v in save_deleted_edges.items():
svala_data['edges'][k] = v
assert len(svala_data['edges']) == len(edges_order)
sentence_edges = []
source_sent_id = 0
target_sent_id = 0
# actually add edges
edges = []
for edge_id in edges_order:
labels = svala_data['edges'][edge_id]['labels']
source_ids = [source_mapper[el] for el in svala_data['edges'][edge_id]['ids'] if el in source_mapper]
target_ids = [target_mapper[el] for el in svala_data['edges'][edge_id]['ids'] if el in target_mapper]
ids = svala_data['edges'][edge_id]['ids']
source_ok = [el[0] == 't' or el in source_sentence_ids[source_sent_id] for el in ids] if source_sentence_ids else []
source_ok_all = all(source_ok)
if not source_ok_all:
source_sent_id += 1
target_ok = [el[0] == 's' or el in target_sentence_ids[target_sent_id] for el in ids] if target_sentence_ids else []
target_ok_all = all(target_ok)
if not target_ok_all:
target_sent_id += 1
if not source_ok_all or not target_ok_all:
sentence_edges.append(edges)
edges = []
edges.append({'source_ids': source_ids, 'target_ids': target_ids, 'labels': labels})
if edges:
sentence_edges.append(edges)
actual_sentence_edges = []
passed_sentence = []
for sent in sentence_edges:
ha_source = False
ha_target = False
for toke in sent:
if len(toke['target_ids']) > 0:
ha_target = toke['target_ids'][0]
if len(toke['source_ids']) > 0:
ha_source = toke['source_ids'][0]
if ha_target and ha_source:
break
if not ha_target or not ha_source:
passed_sentence.extend(sent)
else:
passed_sentence.extend(sent)
actual_sentence_edges.append(passed_sentence)
passed_sentence = []
if passed_sentence:
actual_sentence_edges.append(passed_sentence)
return actual_sentence_edges
def add_token(svala_i, source_i, target_i, el, source, target, edges, svala_data, sentence_string_id):
source_id = "s" + svala_i
target_id = "t" + svala_i
edge_id = "e-" + source_id + "-" + target_id
labels = svala_data['edges'][edge_id]['labels']
sentence_string_id_split = sentence_string_id.split('.')
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{source_i}'
target_token_id = f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{target_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
lemma = el.attrib['lemma'] if token_tag == 'w' else el.text
source.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': source_token_id, 'space_after': False, 'svala_id': source_id})
target.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': target_token_id, 'space_after': False, 'svala_id': target_id})
edges.append({'source_ids': [source_token_id], 'target_ids': [target_token_id], 'labels': labels})
def add_error_token(el, out_list, sentence_string_id, out_list_i, out_list_ids, is_source, s_t_id):
sentence_string_id_split = sentence_string_id.split('.')
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{out_list_i}' if is_source \
else f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{out_list_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
lemma = el.attrib['lemma'] if token_tag == 'w' else el.text
out_list.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': source_token_id, 'space_after': False, 'svala_id': s_t_id})
out_list_ids.append(source_token_id)
def add_error_token_source_target_only(el, out_list, sentence_string_id, out_list_i, is_source, s_t_id):
sentence_string_id_split = sentence_string_id.split('.')
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{out_list_i}' if is_source \
else f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{out_list_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
out_list.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'id': source_token_id, 'space_after': False, 'svala_id': s_t_id})
def add_errors1_0_1(svala_i, source_i, target_i, error, source, target, svala_data, sentence_string_id, edges=None):
source_edge_ids = []
target_edge_ids = []
source_ids = []
target_ids = []
# solar5.7
for el in error:
if el.tag.startswith('w') or el.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el.tag.startswith('p'):
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
target_edge_ids.append(target_id)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
elif el.tag.startswith('u2'):
for el_l2 in el:
if el_l2.tag.startswith('w') or el_l2.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l2, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l2.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l2.tag.startswith('u3'):
for el_l3 in el_l2:
if el_l3.tag.startswith('w') or el_l3.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l3, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l3.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l3.tag.startswith('u4'):
for el_l4 in el_l3:
if el_l4.tag.startswith('w') or el_l4.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l4, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l4.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l4.tag.startswith('u5'):
for el_l5 in el_l4:
if el_l5.tag.startswith('w') or el_l5.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l5, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l5.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
target_edge_ids.append(target_id)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
if edges is not None:
edge_ids = sorted(source_edge_ids) + sorted(target_edge_ids)
edge_id = "e-" + "-".join(edge_ids)
edges.append({'source_ids': source_ids, 'target_ids': target_ids, 'labels': svala_data['edges'][edge_id]['labels']})
return svala_i, source_i, target_i
def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, sentence_string_id, edges=None):
source_edge_ids = []
target_edge_ids = []
source_ids = []
target_ids = []
# solar5.7
for el in error:
if el.tag.startswith('w') or el.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el.tag.startswith('p'):
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
target_edge_ids.append(target_id)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
elif el.tag.startswith('u2'):
for el_l2 in el:
if el_l2.tag.startswith('w') or el_l2.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l2, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l2.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l2.tag.startswith('u3'):
for el_l3 in el_l2:
if el_l3.tag.startswith('w') or el_l3.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l3, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l3.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l3.tag.startswith('u4'):
for el_l4 in el_l3:
if el_l4.tag.startswith('w') or el_l4.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l4, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l4.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l4.tag.startswith('u5'):
for el_l5 in el_l4:
if el_l5.tag.startswith('w') or el_l5.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l5, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l5.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
if edges is not None:
edge_ids = sorted(source_edge_ids) + sorted(target_edge_ids)
edge_id = "e-" + "-".join(edge_ids)
edges.append({'source_ids': source_ids, 'target_ids': target_ids, 'labels': svala_data['edges'][edge_id]['labels']})
return svala_i, source_i, target_i
def add_errors_source_target_only(svala_i, source_i, target_i, error, source, target, svala_data, sentence_string_id):
# solar5.7
for el in error:
if el.tag.startswith('w') or el.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el.tag.startswith('p'):
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
add_error_token_source_target_only(p_el, target, sentence_string_id, target_i, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
elif el.tag.startswith('u2'):
for el_l2 in el:
if el_l2.tag.startswith('w') or el_l2.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l2, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l2.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l2.tag.startswith('u3'):
for el_l3 in el_l2:
if el_l3.tag.startswith('w') or el_l3.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l3, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l3.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l3.tag.startswith('u4'):
for el_l4 in el_l3:
if el_l4.tag.startswith('w') or el_l4.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l4, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l4.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l4.tag.startswith('u5'):
for el_l5 in el_l4:
if el_l5.tag.startswith('w') or el_l5.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l5, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l5.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
add_error_token_source_target_only(p_el, target, sentence_string_id, target_i, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
return svala_i, source_i, target_i
def create_conllu(interest_list, sentence_string_id):
conllu_result = TokenList([{"id": token_i + 1, "form": token['token'], "lemma": None, "upos": None, "xpos": None, "feats": None,
"head": None, "deprel": None, "deps": None, "misc": "SpaceAfter=No"} if not token['space_after']
else {"id": token_i + 1, "form": token['token'], "lemma": None, "upos": None, "xpos": None,
"feats": None, "head": None, "deprel": None, "deps": None, "misc": None} for token_i, token in
enumerate(interest_list)])
# Delete last SpaceAfter
misc = conllu_result[len(conllu_result) - 1]['misc'] if len(conllu_result) > 0 else None
if misc is not None:
misc_split = misc.split('|')
if misc is not None and misc == 'SpaceAfter=No':
conllu_result[len(conllu_result) - 1]['misc'] = None
elif misc is not None and 'SpaceAfter=No' in misc_split:
conllu_result[len(conllu_result) - 1]['misc'] = '|'.join([el for el in misc_split if el != 'SpaceAfter=No'])
conllu_result.metadata = {"sent_id": sentence_string_id}
return conllu_result.serialize()
def process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func):
par_source = []
par_target = []
source_conllus = []
target_conllus = []
for sentence_id, sentence in enumerate(sentences):
source = []
target = []
edges = []
sentence_id += 1
source_i = 1
target_i = 1
sentence_string_id = paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] + f'.{sentence_id}'
for el in sentence:
if el.tag.startswith('w'):
add_token(str(svala_i), source_i, target_i, el, source, target, edges, svala_data, sentence_string_id)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('pc'):
add_token(str(svala_i), source_i, target_i, el, source, target, edges, svala_data, sentence_string_id)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('u'):
svala_i, source_i, target_i = add_errors_func(svala_i, source_i, target_i, el, source, target,
svala_data, sentence_string_id)
elif el.tag.startswith('c'):
if len(source) > 0:
source[-1]['space_after'] = True
if len(target) > 0:
target[-1]['space_after'] = True
par_source.append(source)
par_target.append(target)
source_conllu = ''
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
target_conllu = ''
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
source_conllus.append(source_conllu)
target_conllus.append(target_conllu)
sentence_edges = create_edges(svala_data, par_source, par_target)
return sentence_edges, source_conllus, target_conllus
def read_raw_text(path):
with open(path, 'r') as rf:
return rf.read()
HAND_FIXES = {'§§§pisala': ['§', '§', '§', 'pisala'], '§§§poldne': ['§', '§', '§', 'poldne'], '§§§o': ['§', '§', '§', 'o'], '§§§mimi': ['§', '§', '§', 'mimi'], '§§§nil': ['§', '§', '§', 'nil'], '§§§ela': ['§', '§', '§', 'ela'], 'sam§§§': ['sam', '§', '§', '§'], 'globa觧§': ['globač', '§', '§', '§'], 'sin.': ['sin', '.'], '§§§oveduje': ['§', '§', '§', 'oveduje'], 'na§§§': ['na', '§', '§', '§'], '§§§ka§§§': ['§', '§', '§', 'ka', '§', '§', '§'], '§§§e§§§': ['§', '§', '§', 'e', '§', '§', '§'], '§§§': ['§', '§', '§'], 'ljubezni.': ['ljubezni', '.'], '12.': ['12', '.'], '16.': ['16', '.'], 'st.': ['st', '.'], 'S.': ['S', '.'], 'pr.': ['pr', '.'], 'n.': ['n', '.'], '19:30': ['19', ':', '30'], '9.': ['9', '.'], '6:35': ['6', ':', '35'], 'itd.': ['itd', '.'], 'Sv.': ['Sv', '.'], 'npr.': ['npr', '.'], 'sv.': ['sv', '.'], '12:00': ['12', ':', '00'], "sram'vali": ['sram', "'", 'vali'], '18:00': ['18', ':', '00'], 'J.': ['J', '.'], '5:45': ['5', ':', '45'], '17.': ['17', '.'], '9.00h': ['9', '.', '00h'], 'H.': ['H', '.'], '1.': ['1', '.'], '6.': ['6', '.'], '7:10': ['7', ':', '10'], 'g.': ['g', '.'], 'Oz.': ['Oz', '.'], '20:00': ['20', ':', '00'], '17.4.2010': ['17.', '4.', '2010'], 'ga.': ['ga', '.'], 'prof.': ['prof', '.'], '6:45': ['6', ':', '45'], '19.': ['19', '.'], '3.': ['3', '.'], 'tj.': ['tj', '.'], 'Prof.': ['Prof', '.'], '8.': ['8', '.'], '9:18': ['9', ':', '18'], 'ipd.': ['ipd', '.'], '7.': ['7', '.'], 'št.': ['št', '.'], 'oz.': ['oz', '.'], 'R.': ['R', '.'], '13:30': ['13', ':', '30'], '5.': ['5', '.']}
def map_svala_tokenized(svala_data_part, tokenized_paragraph):
paragraph_res = []
svala_data_i = 0
wierd_sign_count = 0
for sentence in tokenized_paragraph:
sentence_res = []
sentence_id = 0
for tok in sentence:
tag = 'pc' if 'xpos' in tok and tok['xpos'] == 'Z' else 'w'
if 'misc' in tok:
assert tok['misc'] == 'SpaceAfter=No'
space_after = not 'misc' in tok
if svala_data_part[svala_data_i]['text'].strip() != tok['text']:
key = svala_data_part[svala_data_i]['text'].strip()
if key not in HAND_FIXES:
print(f'key: {key} ; tok[text]: {tok["text"]}')
if key.startswith('§§§') and key.endswith('§§§'):
HAND_FIXES[key] = ['§', '§', '§', key[3:-3], '§', '§', '§']
elif key.startswith('§§§'):
HAND_FIXES[key] = ['§', '§', '§', key[3:]]
elif key.endswith('§§§'):
HAND_FIXES[key] = [key[:-3], '§', '§', '§']
else:
raise 'Word mismatch!'
if tok['text'] == HAND_FIXES[key][wierd_sign_count]:
wierd_sign_count += 1
if wierd_sign_count < len(HAND_FIXES[key]):
continue
else:
tok['text'] = key
wierd_sign_count = 0
else:
print(f'key: {key} ; tok[text]: {tok["text"]}')
raise 'Word mismatch!'
sentence_id += 1
sentence_res.append({'token': tok['text'], 'tag': tag, 'id': sentence_id, 'space_after': space_after, 'svala_id': svala_data_part[svala_data_i]['id']})
svala_data_i += 1
paragraph_res.append(sentence_res)
return paragraph_res
def map_svala_solar2(svala_data_part, solar2_paragraph):
svala_data_i = 0
for sentence in solar2_paragraph:
sentence_id = 0
for tok in sentence:
# if svala_data_part[svala_data_i]['text'].strip() != tok['token']:
# if tok['text'] == '§' and svala_data_part[svala_data_i]['token'].strip() == '§§§':
# wierd_sign_count += 1
# if wierd_sign_count < 3:
# continue
# else:
# tok['text'] = '§§§'
# wierd_sign_count = 0
# else:
# raise 'Word mismatch!'
assert svala_data_part[svala_data_i]['text'].strip() == tok['token']
sentence_id += 1
tok['svala_id'] = svala_data_part[svala_data_i]['id']
svala_data_i += 1
def update_ids(pretag, in_list):
for el in in_list:
el['id'] = f'{pretag}.{el["id"]}'
def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func, source_raw_text, target_raw_text, nlp_tokenize):
if source_raw_text is not None:
text = read_raw_text(source_raw_text)
raw_text, source_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text) if text else ([], [], [])
source_res = map_svala_tokenized(svala_data['source'], source_tokenized)
if target_raw_text is not None:
text = read_raw_text(target_raw_text)
raw_text, target_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text) if text else ([], [], [])
target_res = map_svala_tokenized(svala_data['target'], target_tokenized)
par_source = []
par_target = []
sentences_len = len(sentences)
source_conllus = []
target_conllus = []
if source_raw_text is not None:
sentences_len = max(sentences_len, len(source_res))
if target_raw_text is not None:
sentences_len = max(sentences_len, len(target_res))
for sentence_id in range(sentences_len):
source = []
target = []
sentence_id += 1
source_i = 1
target_i = 1
sentence_string_id = paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] + f'.{sentence_id}'
sentence_string_id_split = sentence_string_id.split('.')
if sentence_id - 1 < len(sentences):
sentence = sentences[sentence_id - 1]
for el in sentence:
if el.tag.startswith('w'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('pc'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('u'):
if source_raw_text is None or target_raw_text is None:
svala_i, source_i, target_i = add_errors_source_target_only(svala_i, source_i, target_i, el, source, target, svala_data, sentence_string_id)
else:
svala_i, source_i, target_i = add_errors_func(svala_i, source_i, target_i, el, source, target,
svala_data, sentence_string_id)
elif el.tag.startswith('c'):
if len(source) > 0:
source[-1]['space_after'] = True
if len(target) > 0:
target[-1]['space_after'] = True
if source_raw_text is not None and sentence_id - 1 < len(source_res):
source = source_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}', source)
par_source.append(source)
source_conllu = ''
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
if target_raw_text is not None and sentence_id - 1 < len(target_res):
target = target_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}', target)
par_target.append(target)
if source_raw_text is None:
par_source.append(source)
if target_raw_text is None:
par_target.append(target)
target_conllu = ''
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
if source_raw_text is None or len(source_conllus) < len(par_source):
source_conllus.append(source_conllu)
if target_raw_text is None or len(target_conllus) < len(par_target):
target_conllus.append(target_conllu)
# reannotate svala_ids
if source_raw_text is None:
map_svala_solar2(svala_data['source'], par_source)
if target_raw_text is None:
map_svala_solar2(svala_data['target'], par_target)
sentence_edges = create_edges(svala_data, par_source, par_target)
return sentence_edges, source_conllus, target_conllus
def tokenize(args):
if os.path.exists(args.tokenization_interprocessing) and not args.overwrite_tokenization:
print('READING AND MERGING...')
with open(args.tokenization_interprocessing, 'rb') as rp:
tokenized_source_divs, tokenized_target_divs, document_edges = pickle.load(rp)
return tokenized_source_divs, tokenized_target_divs, document_edges
print('TOKENIZING...')
with open(args.solar_file, 'r') as fp:
logging.info(args.solar_file)
et = ElementTree.XML(fp.read())
nlp_tokenize = classla.Pipeline('sl', processors='tokenize', pos_lemma_pretag=True)
# filename_encountered = False
i = 0
folders_count = 5484
tokenized_source_divs = []
tokenized_target_divs = []
document_edges = []
for div in et.iter('div'):
bibl = div.find('bibl')
file_name = bibl.get('n')
file_name = file_name.replace('/', '_')
print(f'{i*100/folders_count} % : {file_name}')
i += 1
# if file_name == 'S20-PI-slo-2-SG-D-2016_2017-30479-12.txt':
# if file_name == 'KUS-G-slo-4-GO-E-2009-10017':
# # # if i*100/folders_count > 40:
# filename_encountered = True
# # # # if i*100/folders_count > 41:
# # # # filename_encountered = False
# if not filename_encountered:
# continue
svala_path = os.path.join(args.svala_folder, file_name)
corrected_svala_path = os.path.join(args.corrected_svala_folder, file_name)
raw_texts_path = os.path.join(args.svala_generated_text_folder, file_name)
svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in os.listdir(svala_path)] if os.path.isdir(svala_path) else []
svala_dict = {e[0]: e[1] for e in svala_list}
if os.path.exists(corrected_svala_path):
corrected_svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in os.listdir(corrected_svala_path)]
corrected_svala_dict = {e[0]: e[1] for e in corrected_svala_list}
svala_dict.update(corrected_svala_dict)
assert len(svala_dict) != 0
tokenized_source_paragraphs = []
tokenized_target_paragraphs = []
paragraph_edges = []
paragraphs = div.findall('p')
for paragraph in paragraphs:
sentences = paragraph.findall('s')
svala_i = 1
# read json
# if paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] == 'solar17.6':
# print('here')
svala_file = os.path.join(svala_path, svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']])
corrected_svala_file = os.path.join(corrected_svala_path, svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']])
add_errors_func = add_errors if not os.path.exists(corrected_svala_file) else add_errors1_0_1
jf = open(svala_file) if not os.path.exists(corrected_svala_file) else open(corrected_svala_file)
svala_data = json.load(jf)
jf.close()
source_filename = svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']][:-5] + '_source.json'
target_filename = svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']][:-5] + '_target.json'
source_raw_text = os.path.join(raw_texts_path, source_filename) if os.path.exists(os.path.join(raw_texts_path, source_filename)) else None
target_raw_text = os.path.join(raw_texts_path, target_filename) if os.path.exists(os.path.join(raw_texts_path, target_filename)) else None
if not (source_raw_text or target_raw_text):
sentence_edges, tokenized_source_sentences, tokenized_target_sentences = process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func)
else:
sentence_edges, tokenized_source_sentences, tokenized_target_sentences = process_obeliks_paragraph(sentences, paragraph, svala_i,
svala_data, add_errors_func, source_raw_text, target_raw_text, nlp_tokenize)
tokenized_source_paragraphs.append(tokenized_source_sentences)
tokenized_target_paragraphs.append(tokenized_target_sentences)
paragraph_edges.append(sentence_edges)
tokenized_source_divs.append(tokenized_source_paragraphs)
tokenized_target_divs.append(tokenized_target_paragraphs)
document_edges.append(paragraph_edges)
with open(args.tokenization_interprocessing, 'wb') as wp:
pickle.dump((tokenized_source_divs, tokenized_target_divs, document_edges), wp)
return tokenized_source_divs, tokenized_target_divs, document_edges
def annotate(tokenized_source_divs, tokenized_target_divs, args):
if os.path.exists(args.annotation_interprocessing) and not args.overwrite_annotation:
print('READING...')
with open(args.annotation_interprocessing, 'rb') as rp:
annotated_source_divs, annotated_target_divs = pickle.load(rp)
return annotated_source_divs, annotated_target_divs
nlp = classla.Pipeline('sl', pos_use_lexicon=True, pos_lemma_pretag=False, tokenize_pretokenized="conllu",
type='standard_jos')
annotated_source_divs = []
complete_source_conllu = ''
print('ANNOTATING SOURCE...')
for i, div in enumerate(tokenized_source_divs):
print(f'{str(i*100/len(tokenized_source_divs))}')
annotated_source_pars = []
for par in div:
annotated_source_sens = []
for sen in par:
source_conllu_annotated = nlp(sen).to_conll() if sen else ''
annotated_source_sens.append(source_conllu_annotated)
complete_source_conllu += source_conllu_annotated
annotated_source_pars.append(annotated_source_sens)
annotated_source_divs.append(annotated_source_pars)
annotated_target_divs = []
complete_target_conllu = ''
print('ANNOTATING TARGET...')
for i, div in enumerate(tokenized_target_divs):
print(f'{str(i * 100 / len(tokenized_target_divs))}')
annotated_target_pars = []
for par in div:
annotated_target_sens = []
for sen in par:
target_conllu_annotated = nlp(sen).to_conll() if sen else ''
annotated_target_sens.append(target_conllu_annotated)
complete_target_conllu += target_conllu_annotated
annotated_target_pars.append(annotated_target_sens)
annotated_target_divs.append(annotated_target_pars)
with open(os.path.join(args.results_folder, f"source.conllu"), 'w') as sf:
sf.write(complete_source_conllu)
with open(os.path.join(args.results_folder, f"target.conllu"), 'w') as sf:
sf.write(complete_target_conllu)
with open(args.annotation_interprocessing, 'wb') as wp:
pickle.dump((annotated_source_divs, annotated_target_divs), wp)
return annotated_source_divs, annotated_target_divs
def write_tei(annotated_source_divs, annotated_target_divs, document_edges, args):
print('BUILDING LINKS...')
etree_links = build_links(document_edges)
with open(os.path.join(args.results_folder, f"links.xml"), 'w') as tf:
tf.write(etree.tostring(etree_links, pretty_print=True, encoding='utf-8').decode())
with open(os.path.join(args.results_folder, f"links.json"), 'w') as jf:
json.dump(document_edges, jf, ensure_ascii=False, indent=" ")
print('WRITTING TEI...')
etree_source_documents = []
etree_target_documents = []
etree_source_divs = []
etree_target_divs = []
with open(args.solar_file, 'r') as fp:
logging.info(args.solar_file)
et = ElementTree.XML(fp.read())
# filename_encountered = False
i = 0
folders_count = 5484
div_i = 0
for div in et.iter('div'):
bibl = div.find('bibl')
file_name = bibl.get('n')
file_name = file_name.replace('/', '_')
print(f'{i * 100 / folders_count} % : {file_name}')
i += 1
# if i * 100 / folders_count > 50:
# filename_encountered = True
# # if file_name == 'KUS-G-slo-4-GO-E-2009-10071':
# # filename_encountered = True
# if i * 100 / folders_count > 51:
# filename_encountered = False
#
# if file_name == 'KUS-G-slo-1-LJ-E-2009_2010-10540':
# # div_i -= 1
# continue
#
# if file_name == 'KUS-SI-slo-2-NM-E-2009_2010-20362' or file_name == 'KUS-OS-slo-9-SG-R-2009_2010-40129' or file_name == 'KUS-OS-slo-7-SG-R-2009_2010-40173':
# # div_i -= 1
# continue
#
# if not filename_encountered:
# div_i+=1
#
# continue
etree_source_paragraphs = []
etree_target_paragraphs = []
# paragraph_edges = []
paragraphs = div.findall('p')
par_i = 0
for paragraph in paragraphs:
etree_source_sentences = []
etree_target_sentences = []
for sentence_id, source_conllu_annotated in enumerate(annotated_source_divs[div_i][par_i]):
if len(source_conllu_annotated) > 0:
source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
if len(source_conllu_annotated) > 0:
etree_source_sentences.append(construct_sentence_from_list(str(sentence_id + 1), source_conllu_parsed, True))
for sentence_id, target_conllu_annotated in enumerate(annotated_target_divs[div_i][par_i]):
if len(target_conllu_annotated) > 0:
target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
if len(target_conllu_annotated) > 0:
etree_target_sentences.append(construct_sentence_from_list(str(sentence_id + 1), target_conllu_parsed, False))
etree_source_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_source_sentences, True))
etree_target_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_target_sentences, False))
par_i += 1
etree_bibl = convert_bibl(bibl)
etree_source_divs.append((etree_source_paragraphs, copy.deepcopy(etree_bibl), paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's'))
etree_target_divs.append((etree_target_paragraphs, copy.deepcopy(etree_bibl), paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't'))
div_i += 1
print('APPENDING DOCUMENT...')
etree_source_documents.append(
TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's',
etree_source_divs, etree_target_divs))
etree_target_documents.append(
TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't',
etree_target_divs, etree_source_divs))
print('BUILDING TEI DOCUMENTS...')
etree_source = build_tei_etrees(etree_source_documents)
etree_target = build_tei_etrees(etree_target_documents)
print('Writting all but complete')
with open(os.path.join(args.results_folder, f"source.xml"), 'w') as sf:
sf.write(etree.tostring(etree_source[0], pretty_print=True, encoding='utf-8').decode())
with open(os.path.join(args.results_folder, f"target.xml"), 'w') as tf:
tf.write(etree.tostring(etree_target[0], pretty_print=True, encoding='utf-8').decode())
print('COMPLETE TREE CREATION...')
complete_etree = build_complete_tei(copy.deepcopy(etree_source), copy.deepcopy(etree_target), etree_links)
# complete_etree = build_complete_tei(etree_source, etree_target, etree_links)
print('WRITING COMPLETE TREE')
with open(os.path.join(args.results_folder, f"complete.xml"), 'w') as tf:
tf.write(etree.tostring(complete_etree, pretty_print=True, encoding='utf-8').decode())
def process_file(args):
if os.path.exists(args.results_folder):
shutil.rmtree(args.results_folder)
os.mkdir(args.results_folder)
# READ AND MERGE svala tokenization, solar2 tokenization and obeliks tokenization
tokenized_source_divs, tokenized_target_divs, document_edges = tokenize(args)
# ANNOTATE WITH CLASSLA
annotated_source_divs, annotated_target_divs = annotate(tokenized_source_divs, tokenized_target_divs, args)
# GENERATE TEI AND WRITE OUTPUT
write_tei(annotated_source_divs, annotated_target_divs, document_edges, args)
def main(args):
process_file(args)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Read already processed xmls, erase entries without examples and limit gigafida examples to 1 per entry.')
parser.add_argument('--solar_file', default='data/Solar2.0/solar2.xml',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--svala_folder', default='data/solar.svala',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--corrected_svala_folder', default='data/solar.svala.fixed.1.0.1_2',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--results_folder', default='data/results/solar3.0',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--svala_generated_text_folder', default='data/svala_generated_text.formatted',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--tokenization_interprocessing', default='data/processing.tokenization',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--overwrite_tokenization', action='store_true', help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--annotation_interprocessing', default='data/processing.annotation',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--overwrite_annotation', action='store_true', help='input file in (gz or xml currently). If none, then just database is loaded')
args = parser.parse_args()
start = time.time()
main(args)
logging.info("TIME: {}".format(time.time() - start))