Major structure refactorin + Beginning to add default (KOST) implementation.

This commit is contained in:
Luka 2022-10-31 10:54:53 +00:00
parent 8aae175395
commit bafbb6a48a
11 changed files with 2331 additions and 1071 deletions

2
requirements.txt Normal file
View File

@ -0,0 +1,2 @@
classla==1.1.0
conllu==4.5.2

0
src/annotate/__init__.py Normal file
View File

55
src/annotate/annotate.py Normal file
View File

@ -0,0 +1,55 @@
import os
import pickle
import classla
def annotate(tokenized_source_divs, tokenized_target_divs, args):
if os.path.exists(args.annotation_interprocessing) and not args.overwrite_annotation:
print('READING...')
with open(args.annotation_interprocessing, 'rb') as rp:
annotated_source_divs, annotated_target_divs = pickle.load(rp)
return annotated_source_divs, annotated_target_divs
nlp = classla.Pipeline('sl', pos_use_lexicon=True, pos_lemma_pretag=False, tokenize_pretokenized="conllu",
type='standard_jos')
annotated_source_divs = []
complete_source_conllu = ''
print('ANNOTATING SOURCE...')
for i, div in enumerate(tokenized_source_divs):
print(f'{str(i*100/len(tokenized_source_divs))}')
annotated_source_pars = []
for par in div:
annotated_source_sens = []
for sen in par:
source_conllu_annotated = nlp(sen).to_conll() if sen else ''
annotated_source_sens.append(source_conllu_annotated)
complete_source_conllu += source_conllu_annotated
annotated_source_pars.append(annotated_source_sens)
annotated_source_divs.append(annotated_source_pars)
annotated_target_divs = []
complete_target_conllu = ''
print('ANNOTATING TARGET...')
for i, div in enumerate(tokenized_target_divs):
print(f'{str(i * 100 / len(tokenized_target_divs))}')
annotated_target_pars = []
for par in div:
annotated_target_sens = []
for sen in par:
target_conllu_annotated = nlp(sen).to_conll() if sen else ''
annotated_target_sens.append(target_conllu_annotated)
complete_target_conllu += target_conllu_annotated
annotated_target_pars.append(annotated_target_sens)
annotated_target_divs.append(annotated_target_pars)
with open(os.path.join(args.results_folder, f"source.conllu"), 'w') as sf:
sf.write(complete_source_conllu)
with open(os.path.join(args.results_folder, f"target.conllu"), 'w') as sf:
sf.write(complete_target_conllu)
with open(args.annotation_interprocessing, 'wb') as wp:
pickle.dump((annotated_source_divs, annotated_target_divs), wp)
return annotated_source_divs, annotated_target_divs

0
src/read/__init__.py Normal file
View File

509
src/read/merge.py Normal file
View File

@ -0,0 +1,509 @@
from src.read.read import read_raw_text, map_svala_tokenized
from conllu import TokenList
def create_edges_list(target_ids, links_ids_mapper):
target_edges = []
target_edges_set = []
for target_sentence in target_ids:
target_sentence_edges = []
for target_id in target_sentence:
target_sentence_edges.extend(links_ids_mapper[target_id])
target_edges.append(target_sentence_edges)
target_edges_set.append(set(target_sentence_edges))
return target_edges, target_edges_set
SKIP_IDS = ['solar2284s.1.1.1']
def create_edges(svala_data, source_par, target_par):
if source_par and source_par[0]:
if source_par[0][0]['id'] in SKIP_IDS:
return []
# print(source_par[0][0]['id'])
# if source_par[0][0]['id'] == 'solar17s.6.3.1':
# print('pause!')
# if target_par and target_par[0]:
# print(target_par[0][0]['id'])
# if target_par[0][0]['id'] == 'solar2150t.4.1.1':
# print('pause!')
source_mapper = {el['svala_id']: el['id'] for source in source_par for el in source}
target_mapper = {el['svala_id']: el['id'] for target in target_par for el in target}
source_ids = [[el['svala_id'] for el in source] for source in source_par]
target_ids = [[el['svala_id'] for el in target] for target in target_par]
source_sentence_ids = [set([el['svala_id'] for el in source]) for source in source_par]
target_sentence_ids = [set([el['svala_id'] for el in target]) for target in target_par]
# create links to ids mapper
links_ids_mapper = {}
edges_of_one_type = set()
# delete empty edge
if 'e-' in svala_data['edges']:
del (svala_data['edges']['e-'])
for k, v in svala_data['edges'].items():
has_source = False
has_target = False
for el in v['ids']:
# create edges of one type
if el[0] == 's':
has_source = True
if el[0] == 't':
has_target = True
# create links_ids_mapper
if el not in links_ids_mapper:
links_ids_mapper[el] = []
links_ids_mapper[el].append(k)
if not has_source or not has_target or (len(svala_data['source']) == 1 and svala_data['source'][0]['text'] == ' ') \
or (len(svala_data['target']) == 1 and svala_data['target'][0]['text'] == ' '):
edges_of_one_type.add(k)
# delete edge with space
save_deleted_edges = {}
if len(svala_data['source']) == 1 and svala_data['source'][0]['text'] == ' ':
for edg in links_ids_mapper[svala_data['source'][0]['id']]:
save_deleted_edges[edg] = svala_data['edges'][edg]
del (svala_data['edges'][edg])
del (links_ids_mapper[svala_data['source'][0]['id']])
if len(svala_data['target']) == 1 and svala_data['target'][0]['text'] == ' ':
for edg in links_ids_mapper[svala_data['target'][0]['id']]:
save_deleted_edges[edg] = svala_data['edges'][edg]
del (svala_data['edges'][edg])
del (links_ids_mapper[svala_data['target'][0]['id']])
# create edge order
edges_order = []
edges_processed = set()
active_target_sentence_i = 0
# create target edges
target_edges, target_edges_set = create_edges_list(target_ids, links_ids_mapper)
source_edges, source_edges_set = create_edges_list(source_ids, links_ids_mapper)
last_target_edge = ''
for active_source_sentence_i, active_source_sentence in enumerate(source_edges):
for source_edge in active_source_sentence:
# print(source_edge)
# if 'e-s7-t8' == source_edge:
# print('aaa')
if source_edge in edges_of_one_type:
if source_edge not in edges_processed:
edges_order.append(source_edge)
edges_processed.add(source_edge)
elif target_edges_set and source_edge in target_edges_set[active_target_sentence_i]:
# if 'e-s119-t119' == source_edge:
# print('aaa')
if source_edge not in edges_processed:
edges_order.append(source_edge)
edges_processed.add(source_edge)
last_target_edge = source_edge
# when source is connected to two targets
elif source_edge not in target_edges_set[active_target_sentence_i]:
# add missing edges from target
while source_edge not in target_edges_set[active_target_sentence_i]:
for target_edge in target_edges[active_target_sentence_i]:
if target_edge in edges_of_one_type:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
last_target_edge = target_edge
active_target_sentence_i += 1
if source_edge in target_edges_set[active_target_sentence_i]:
if source_edge not in edges_processed:
edges_order.append(source_edge)
edges_processed.add(source_edge)
else:
raise 'Impossible!!!'
if not target_edges_set or not target_edges_set[0] or active_target_sentence_i >= len(target_edges):
continue
if len(target_edges[active_target_sentence_i]) == 0:
active_target_sentence_i += 1
continue
if last_target_edge == target_edges[active_target_sentence_i][-1] or (len(target_edges[active_target_sentence_i]) > 1 and last_target_edge == target_edges[active_target_sentence_i][-2] and (target_edges[active_target_sentence_i][-1] in edges_of_one_type or (target_edges[active_target_sentence_i][-1] not in edges_of_one_type and target_edges[active_target_sentence_i][-1] in source_edges_set[active_source_sentence_i]))):
for target_edge in target_edges[active_target_sentence_i]:
if target_edge in edges_of_one_type:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
last_target_edge = target_edge
active_target_sentence_i += 1
continue
target_edge_in_next_source_edge_sentence = False
for target_edge in target_edges[active_target_sentence_i]:
if active_source_sentence_i + 1 < len(source_edges_set) and target_edge in source_edges_set[active_source_sentence_i + 1]:
target_edge_in_next_source_edge_sentence = True
break
if target_edge_in_next_source_edge_sentence:
pass
elif not target_edge_in_next_source_edge_sentence:
target_edge_in_next_source_edge_sentence = False
while not target_edge_in_next_source_edge_sentence:
# if active_target_sentence_i >= len(target_edges_set):
# break
for target_edge in target_edges[active_target_sentence_i]:
if target_edge in edges_of_one_type:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
last_target_edge = target_edge
# if there is no next source sentence
if active_source_sentence_i + 1 >= len(source_edges_set):
target_edge_in_next_source_edge_sentence = True
# if last_target_edge only in target stop regularly
if last_target_edge == target_edges[active_target_sentence_i][-1]:
target_edge_in_next_source_edge_sentence = True
# test if target_edge in next source
for target_edge in target_edges[active_target_sentence_i]:
if active_source_sentence_i + 1 < len(source_edges_set) and target_edge in source_edges_set[
active_source_sentence_i + 1]:
target_edge_in_next_source_edge_sentence = True
break
active_target_sentence_i += 1
if not source_edges:
for active_target_sentence in target_edges:
for target_edge in active_target_sentence:
if target_edge not in edges_processed:
edges_order.append(target_edge)
edges_processed.add(target_edge)
# # DEBUG stuff
# for edge_order in edges_order:
# if edges_order.count(edge_order) > 1:
# # if edge_order not in a:
# print(f'ERROR {edge_order}')
#
# for edge_order in edges_order:
# if edge_order not in svala_data['edges']:
# print(f'ERROR {edge_order}')
#
# for key in svala_data['edges'].keys():
# if key not in edges_order:
# print(f'ERROR {key}')
#
# a = len(svala_data['edges'])
# b = len(edges_order)
if len(svala_data['edges']) != len(edges_order):
for k, v in save_deleted_edges.items():
svala_data['edges'][k] = v
assert len(svala_data['edges']) == len(edges_order)
sentence_edges = []
source_sent_id = 0
target_sent_id = 0
# actually add edges
edges = []
for edge_id in edges_order:
labels = svala_data['edges'][edge_id]['labels']
source_ids = [source_mapper[el] for el in svala_data['edges'][edge_id]['ids'] if el in source_mapper]
target_ids = [target_mapper[el] for el in svala_data['edges'][edge_id]['ids'] if el in target_mapper]
ids = svala_data['edges'][edge_id]['ids']
source_ok = [el[0] == 't' or el in source_sentence_ids[source_sent_id] for el in ids] if source_sentence_ids else []
source_ok_all = all(source_ok)
if not source_ok_all:
source_sent_id += 1
target_ok = [el[0] == 's' or el in target_sentence_ids[target_sent_id] for el in ids] if target_sentence_ids else []
target_ok_all = all(target_ok)
if not target_ok_all:
target_sent_id += 1
if not source_ok_all or not target_ok_all:
sentence_edges.append(edges)
edges = []
edges.append({'source_ids': source_ids, 'target_ids': target_ids, 'labels': labels})
if edges:
sentence_edges.append(edges)
actual_sentence_edges = []
passed_sentence = []
for sent in sentence_edges:
ha_source = False
ha_target = False
for toke in sent:
if len(toke['target_ids']) > 0:
ha_target = toke['target_ids'][0]
if len(toke['source_ids']) > 0:
ha_source = toke['source_ids'][0]
if ha_target and ha_source:
break
if not ha_target or not ha_source:
passed_sentence.extend(sent)
else:
passed_sentence.extend(sent)
actual_sentence_edges.append(passed_sentence)
passed_sentence = []
if passed_sentence:
actual_sentence_edges.append(passed_sentence)
return actual_sentence_edges
def update_ids(pretag, in_list):
for el in in_list:
el['id'] = f'{pretag}.{el["id"]}'
def create_conllu(interest_list, sentence_string_id):
conllu_result = TokenList([{"id": token_i + 1, "form": token['token'], "lemma": None, "upos": None, "xpos": None, "feats": None,
"head": None, "deprel": None, "deps": None, "misc": "SpaceAfter=No"} if not token['space_after']
else {"id": token_i + 1, "form": token['token'], "lemma": None, "upos": None, "xpos": None,
"feats": None, "head": None, "deprel": None, "deps": None, "misc": None} for token_i, token in
enumerate(interest_list)])
# Delete last SpaceAfter
misc = conllu_result[len(conllu_result) - 1]['misc'] if len(conllu_result) > 0 else None
if misc is not None:
misc_split = misc.split('|')
if misc is not None and misc == 'SpaceAfter=No':
conllu_result[len(conllu_result) - 1]['misc'] = None
elif misc is not None and 'SpaceAfter=No' in misc_split:
conllu_result[len(conllu_result) - 1]['misc'] = '|'.join([el for el in misc_split if el != 'SpaceAfter=No'])
conllu_result.metadata = {"sent_id": sentence_string_id}
return conllu_result.serialize()
def add_error_token_source_target_only(el, out_list, sentence_string_id, out_list_i, is_source, s_t_id):
sentence_string_id_split = sentence_string_id.split('.')
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{out_list_i}' if is_source \
else f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{out_list_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
out_list.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'id': source_token_id, 'space_after': False, 'svala_id': s_t_id})
def add_errors_source_target_only(svala_i, source_i, target_i, error, source, target, svala_data, sentence_string_id):
# solar5.7
for el in error:
if el.tag.startswith('w') or el.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el.tag.startswith('p'):
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
add_error_token_source_target_only(p_el, target, sentence_string_id, target_i, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
elif el.tag.startswith('u2'):
for el_l2 in el:
if el_l2.tag.startswith('w') or el_l2.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l2, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l2.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l2.tag.startswith('u3'):
for el_l3 in el_l2:
if el_l3.tag.startswith('w') or el_l3.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l3, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l3.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l3.tag.startswith('u4'):
for el_l4 in el_l3:
if el_l4.tag.startswith('w') or el_l4.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l4, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l4.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l4.tag.startswith('u5'):
for el_l5 in el_l4:
if el_l5.tag.startswith('w') or el_l5.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
add_error_token_source_target_only(el_l5, source, sentence_string_id, source_i, True, source_id)
source_i += 1
svala_i += 1
elif el_l5.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
add_error_token_source_target_only(p_el, target, sentence_string_id, target_i, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
return svala_i, source_i, target_i
def add_source(svala_i, source_i, sentence_string_id_split, source, el):
source_id = "s" + svala_i
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{source_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
source.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'id': source_token_id,
'space_after': False, 'svala_id': source_id})
def add_target(svala_i, target_i, sentence_string_id_split, target, el):
target_id = "t" + svala_i
target_token_id = f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{target_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
target.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'id': target_token_id,
'space_after': False, 'svala_id': target_id})
def merge(sentences, paragraph, svala_i, svala_data, add_errors_func, source_raw_text, target_raw_text, nlp_tokenize):
if source_raw_text is not None:
text = read_raw_text(source_raw_text)
raw_text, source_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text) if text else ([], [], [])
source_res = map_svala_tokenized(svala_data['source'], source_tokenized)
if target_raw_text is not None:
text = read_raw_text(target_raw_text)
raw_text, target_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(text) if text else ([], [], [])
target_res = map_svala_tokenized(svala_data['target'], target_tokenized)
par_source = []
par_target = []
sentences_len = len(sentences)
source_conllus = []
target_conllus = []
if source_raw_text is not None:
sentences_len = max(sentences_len, len(source_res))
if target_raw_text is not None:
sentences_len = max(sentences_len, len(target_res))
for sentence_id in range(sentences_len):
source = []
target = []
sentence_id += 1
source_i = 1
target_i = 1
sentence_string_id = paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] + f'.{sentence_id}'
sentence_string_id_split = sentence_string_id.split('.')
if sentence_id - 1 < len(sentences):
sentence = sentences[sentence_id - 1]
for el in sentence:
if el.tag.startswith('w'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('pc'):
if source_raw_text is None:
add_source(str(svala_i), source_i, sentence_string_id_split, source, el)
if target_raw_text is None:
add_target(str(svala_i), target_i, sentence_string_id_split, target, el)
svala_i += 1
source_i += 1
target_i += 1
elif el.tag.startswith('u'):
if source_raw_text is None or target_raw_text is None:
svala_i, source_i, target_i = add_errors_source_target_only(svala_i, source_i, target_i, el, source, target, svala_data, sentence_string_id)
else:
svala_i, source_i, target_i = add_errors_func(svala_i, source_i, target_i, el, source, target,
svala_data, sentence_string_id)
elif el.tag.startswith('c'):
if len(source) > 0:
source[-1]['space_after'] = True
if len(target) > 0:
target[-1]['space_after'] = True
if source_raw_text is not None and sentence_id - 1 < len(source_res):
source = source_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}', source)
par_source.append(source)
source_conllu = ''
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
if target_raw_text is not None and sentence_id - 1 < len(target_res):
target = target_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}', target)
par_target.append(target)
if source_raw_text is None:
par_source.append(source)
if target_raw_text is None:
par_target.append(target)
target_conllu = ''
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
if source_raw_text is None or len(source_conllus) < len(par_source):
source_conllus.append(source_conllu)
if target_raw_text is None or len(target_conllus) < len(par_target):
target_conllus.append(target_conllu)
sentence_edges = create_edges(svala_data, par_source, par_target)
return sentence_edges, source_conllus, target_conllus

52
src/read/read.py Normal file
View File

@ -0,0 +1,52 @@
HAND_FIXES = {'§§§pisala': ['§', '§', '§', 'pisala'], '§§§poldne': ['§', '§', '§', 'poldne'], '§§§o': ['§', '§', '§', 'o'], '§§§mimi': ['§', '§', '§', 'mimi'], '§§§nil': ['§', '§', '§', 'nil'], '§§§ela': ['§', '§', '§', 'ela'], 'sam§§§': ['sam', '§', '§', '§'], 'globa觧§': ['globač', '§', '§', '§'], 'sin.': ['sin', '.'], '§§§oveduje': ['§', '§', '§', 'oveduje'], 'na§§§': ['na', '§', '§', '§'], '§§§ka§§§': ['§', '§', '§', 'ka', '§', '§', '§'], '§§§e§§§': ['§', '§', '§', 'e', '§', '§', '§'], '§§§': ['§', '§', '§'], 'ljubezni.': ['ljubezni', '.'], '12.': ['12', '.'], '16.': ['16', '.'], 'st.': ['st', '.'], 'S.': ['S', '.'], 'pr.': ['pr', '.'], 'n.': ['n', '.'], '19:30': ['19', ':', '30'], '9.': ['9', '.'], '6:35': ['6', ':', '35'], 'itd.': ['itd', '.'], 'Sv.': ['Sv', '.'], 'npr.': ['npr', '.'], 'sv.': ['sv', '.'], '12:00': ['12', ':', '00'], "sram'vali": ['sram', "'", 'vali'], '18:00': ['18', ':', '00'], 'J.': ['J', '.'], '5:45': ['5', ':', '45'], '17.': ['17', '.'], '9.00h': ['9', '.', '00h'], 'H.': ['H', '.'], '1.': ['1', '.'], '6.': ['6', '.'], '7:10': ['7', ':', '10'], 'g.': ['g', '.'], 'Oz.': ['Oz', '.'], '20:00': ['20', ':', '00'], '17.4.2010': ['17.', '4.', '2010'], 'ga.': ['ga', '.'], 'prof.': ['prof', '.'], '6:45': ['6', ':', '45'], '19.': ['19', '.'], '3.': ['3', '.'], 'tj.': ['tj', '.'], 'Prof.': ['Prof', '.'], '8.': ['8', '.'], '9:18': ['9', ':', '18'], 'ipd.': ['ipd', '.'], '7.': ['7', '.'], 'št.': ['št', '.'], 'oz.': ['oz', '.'], 'R.': ['R', '.'], '13:30': ['13', ':', '30'], '5.': ['5', '.'], '...': ['.', '.', '.']}
def read_raw_text(path):
with open(path, 'r') as rf:
return rf.read()
def map_svala_tokenized(svala_data_part, tokenized_paragraph, sent_i):
paragraph_res = []
wierd_sign_count = 0
svala_data_i = 0
for i in range(sent_i, len(tokenized_paragraph)):
sentence = tokenized_paragraph[i]
sentence_res = []
sentence_id = 0
for tok in sentence:
tag = 'pc' if 'xpos' in tok and tok['xpos'] == 'Z' else 'w'
if 'misc' in tok:
assert tok['misc'] == 'SpaceAfter=No'
space_after = not 'misc' in tok
if len(svala_data_part) <= svala_data_i:
return i, paragraph_res
if svala_data_part[svala_data_i]['text'].strip() != tok['text']:
key = svala_data_part[svala_data_i]['text'].strip()
if key not in HAND_FIXES:
print(f'key: {key} ; tok[text]: {tok["text"]}')
if key.startswith('§§§') and key.endswith('§§§'):
HAND_FIXES[key] = ['§', '§', '§', key[3:-3], '§', '§', '§']
elif key.startswith('§§§'):
HAND_FIXES[key] = ['§', '§', '§', key[3:]]
elif key.endswith('§§§'):
HAND_FIXES[key] = [key[:-3], '§', '§', '§']
else:
raise 'Word mismatch!'
if tok['text'] == HAND_FIXES[key][wierd_sign_count]:
wierd_sign_count += 1
if wierd_sign_count < len(HAND_FIXES[key]):
continue
else:
tok['text'] = key
wierd_sign_count = 0
else:
print(f'key: {key} ; tok[text]: {tok["text"]}')
raise 'Word mismatch!'
sentence_id += 1
sentence_res.append({'token': tok['text'], 'tag': tag, 'id': sentence_id, 'space_after': space_after, 'svala_id': svala_data_part[svala_data_i]['id']})
svala_data_i += 1
paragraph_res.append(sentence_res)
return sent_i, paragraph_res

249
src/read/read_and_merge.py Normal file
View File

@ -0,0 +1,249 @@
import json
import os
import pickle
import classla
from src.read.merge import merge
from src.read.read import read_raw_text, map_svala_tokenized
HAND_FIXES = {'§§§pisala': ['§', '§', '§', 'pisala'], '§§§poldne': ['§', '§', '§', 'poldne'], '§§§o': ['§', '§', '§', 'o'], '§§§mimi': ['§', '§', '§', 'mimi'], '§§§nil': ['§', '§', '§', 'nil'], '§§§ela': ['§', '§', '§', 'ela'], 'sam§§§': ['sam', '§', '§', '§'], 'globa觧§': ['globač', '§', '§', '§'], 'sin.': ['sin', '.'], '§§§oveduje': ['§', '§', '§', 'oveduje'], 'na§§§': ['na', '§', '§', '§'], '§§§ka§§§': ['§', '§', '§', 'ka', '§', '§', '§'], '§§§e§§§': ['§', '§', '§', 'e', '§', '§', '§'], '§§§': ['§', '§', '§'], 'ljubezni.': ['ljubezni', '.'], '12.': ['12', '.'], '16.': ['16', '.'], 'st.': ['st', '.'], 'S.': ['S', '.'], 'pr.': ['pr', '.'], 'n.': ['n', '.'], '19:30': ['19', ':', '30'], '9.': ['9', '.'], '6:35': ['6', ':', '35'], 'itd.': ['itd', '.'], 'Sv.': ['Sv', '.'], 'npr.': ['npr', '.'], 'sv.': ['sv', '.'], '12:00': ['12', ':', '00'], "sram'vali": ['sram', "'", 'vali'], '18:00': ['18', ':', '00'], 'J.': ['J', '.'], '5:45': ['5', ':', '45'], '17.': ['17', '.'], '9.00h': ['9', '.', '00h'], 'H.': ['H', '.'], '1.': ['1', '.'], '6.': ['6', '.'], '7:10': ['7', ':', '10'], 'g.': ['g', '.'], 'Oz.': ['Oz', '.'], '20:00': ['20', ':', '00'], '17.4.2010': ['17.', '4.', '2010'], 'ga.': ['ga', '.'], 'prof.': ['prof', '.'], '6:45': ['6', ':', '45'], '19.': ['19', '.'], '3.': ['3', '.'], 'tj.': ['tj', '.'], 'Prof.': ['Prof', '.'], '8.': ['8', '.'], '9:18': ['9', ':', '18'], 'ipd.': ['ipd', '.'], '7.': ['7', '.'], 'št.': ['št', '.'], 'oz.': ['oz', '.'], 'R.': ['R', '.'], '13:30': ['13', ':', '30'], '5.': ['5', '.'], '...': ['.', '.', '.']}
def add_error_token(el, out_list, sentence_string_id, out_list_i, out_list_ids, is_source, s_t_id):
sentence_string_id_split = sentence_string_id.split('.')
source_token_id = f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}.{out_list_i}' if is_source \
else f'{sentence_string_id_split[0]}t.{".".join(sentence_string_id_split[1:])}.{out_list_i}'
token_tag = 'w' if el.tag.startswith('w') else 'pc'
lemma = el.attrib['lemma'] if token_tag == 'w' else el.text
out_list.append({'token': el.text, 'tag': token_tag, 'ana': el.attrib['ana'], 'lemma': lemma, 'id': source_token_id, 'space_after': False, 'svala_id': s_t_id})
out_list_ids.append(source_token_id)
def add_errors(svala_i, source_i, target_i, error, source, target, svala_data, sentence_string_id, edges=None):
source_edge_ids = []
target_edge_ids = []
source_ids = []
target_ids = []
# solar5.7
for el in error:
if el.tag.startswith('w') or el.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el.tag.startswith('p'):
for p_el in el:
if p_el.tag.startswith('w') or p_el.tag.startswith('pc'):
ind = str(svala_i)
target_id = "t" + ind
target_edge_ids.append(target_id)
add_error_token(p_el, target, sentence_string_id, target_i, target_ids, False, target_id)
target_i += 1
svala_i += 1
elif p_el.tag.startswith('c') and len(target) > 0:
target[-1]['space_after'] = True
elif el.tag.startswith('u2'):
for el_l2 in el:
if el_l2.tag.startswith('w') or el_l2.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l2, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l2.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l2.tag.startswith('u3'):
for el_l3 in el_l2:
if el_l3.tag.startswith('w') or el_l3.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l3, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l3.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l3.tag.startswith('u4'):
for el_l4 in el_l3:
if el_l4.tag.startswith('w') or el_l4.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l4, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l4.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
elif el_l4.tag.startswith('u5'):
for el_l5 in el_l4:
if el_l5.tag.startswith('w') or el_l5.tag.startswith('pc'):
ind = str(svala_i)
source_id = "s" + ind
source_edge_ids.append(source_id)
add_error_token(el_l5, source, sentence_string_id, source_i, source_ids, True, source_id)
source_i += 1
svala_i += 1
elif el_l5.tag.startswith('c') and len(source) > 0:
source[-1]['space_after'] = True
if edges is not None:
edge_ids = sorted(source_edge_ids) + sorted(target_edge_ids)
edge_id = "e-" + "-".join(edge_ids)
edges.append({'source_ids': source_ids, 'target_ids': target_ids, 'labels': svala_data['edges'][edge_id]['labels']})
return svala_i, source_i, target_i
def create_target(svala_data, source_tokenized):
for i, el in enumerate(svala_data['target']):
print(i)
def tokenize(args):
if os.path.exists(args.tokenization_interprocessing) and not args.overwrite_tokenization:
print('READING AND MERGING...')
with open(args.tokenization_interprocessing, 'rb') as rp:
tokenized_source_divs, tokenized_target_divs, document_edges = pickle.load(rp)
return tokenized_source_divs, tokenized_target_divs, document_edges
print('TOKENIZING...')
# with open(args.solar_file, 'r') as fp:
# logging.info(args.solar_file)
# et = ElementTree.XML(fp.read())
nlp_tokenize = classla.Pipeline('sl', processors='tokenize', pos_lemma_pretag=True)
# filename_encountered = False
i = 0
tokenized_source_divs = []
tokenized_target_divs = []
document_edges = []
text_filename = ''
for folder, _, filenames in os.walk(args.svala_folder):
for filename in filenames:
svala_path = os.path.join(folder, filename)
new_text_filename = '-'.join(filename[:-5].split('-')[:3]) + '.txt'
if text_filename != new_text_filename:
text_filename = new_text_filename
text_file = read_raw_text(os.path.join(args.raw_text, text_filename))
raw_text, source_tokenized, metadocument = nlp_tokenize.processors['tokenize']._tokenizer.tokenize(
text_file) if text_file else ([], [], [])
source_sent_i = 0
jf = open(svala_path)
svala_data = json.load(jf)
jf.close()
target_res = create_target(svala_data, source_tokenized)
source_sent_i, source_res = map_svala_tokenized(svala_data['source'], source_tokenized, source_sent_i)
print('aaa')
for div in et.iter('div'):
bibl = div.find('bibl')
file_name = bibl.get('n')
file_name = file_name.replace('/', '_')
print(f'{i*100/folders_count} % : {file_name}')
i += 1
# if file_name == 'S20-PI-slo-2-SG-D-2016_2017-30479-12.txt':
# if file_name == 'KUS-G-slo-4-GO-E-2009-10017':
# # # if i*100/folders_count > 40:
# filename_encountered = True
# # # # if i*100/folders_count > 41:
# # # # filename_encountered = False
# if not filename_encountered:
# continue
svala_path = os.path.join(args.svala_folder, file_name)
corrected_svala_path = os.path.join(args.corrected_svala_folder, file_name)
raw_texts_path = os.path.join(args.svala_generated_text_folder, file_name)
svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in os.listdir(svala_path)] if os.path.isdir(svala_path) else []
svala_dict = {e[0]: e[1] for e in svala_list}
if os.path.exists(corrected_svala_path):
corrected_svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in os.listdir(corrected_svala_path)]
corrected_svala_dict = {e[0]: e[1] for e in corrected_svala_list}
svala_dict.update(corrected_svala_dict)
assert len(svala_dict) != 0
tokenized_source_paragraphs = []
tokenized_target_paragraphs = []
paragraph_edges = []
paragraphs = div.findall('p')
for paragraph in paragraphs:
sentences = paragraph.findall('s')
svala_i = 1
# read json
# if paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'] == 'solar17.6':
# print('here')
svala_file = os.path.join(svala_path, svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']])
corrected_svala_file = os.path.join(corrected_svala_path, svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']])
add_errors_func = add_errors
jf = open(svala_file) if not os.path.exists(corrected_svala_file) else open(corrected_svala_file)
svala_data = json.load(jf)
jf.close()
source_filename = svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']][:-5] + '_source.json'
target_filename = svala_dict[paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id']][:-5] + '_target.json'
source_raw_text = os.path.join(raw_texts_path, source_filename) if os.path.exists(os.path.join(raw_texts_path, source_filename)) else None
target_raw_text = os.path.join(raw_texts_path, target_filename) if os.path.exists(os.path.join(raw_texts_path, target_filename)) else None
sentence_edges, tokenized_source_sentences, tokenized_target_sentences = merge(sentences, paragraph, svala_i,
svala_data, add_errors_func, source_raw_text, target_raw_text, nlp_tokenize)
tokenized_source_paragraphs.append(tokenized_source_sentences)
tokenized_target_paragraphs.append(tokenized_target_sentences)
paragraph_edges.append(sentence_edges)
tokenized_source_divs.append(tokenized_source_paragraphs)
tokenized_target_divs.append(tokenized_target_paragraphs)
document_edges.append(paragraph_edges)
with open(args.tokenization_interprocessing, 'wb') as wp:
pickle.dump((tokenized_source_divs, tokenized_target_divs, document_edges), wp)
return tokenized_source_divs, tokenized_target_divs, document_edges

0
src/write/__init__.py Normal file
View File

125
src/write/write.py Normal file
View File

@ -0,0 +1,125 @@
import copy
import json
import os
from lxml import etree
import conllu
from src.create_tei import construct_sentence_from_list, \
construct_paragraph_from_list, TeiDocument, build_tei_etrees, build_links, build_complete_tei, convert_bibl
def write_tei(annotated_source_divs, annotated_target_divs, document_edges, args):
print('BUILDING LINKS...')
etree_links = build_links(document_edges)
with open(os.path.join(args.results_folder, f"links.xml"), 'w') as tf:
tf.write(etree.tostring(etree_links, pretty_print=True, encoding='utf-8').decode())
with open(os.path.join(args.results_folder, f"links.json"), 'w') as jf:
json.dump(document_edges, jf, ensure_ascii=False, indent=" ")
print('WRITTING TEI...')
etree_source_documents = []
etree_target_documents = []
etree_source_divs = []
etree_target_divs = []
# with open(args.solar_file, 'r') as fp:
# logging.info(args.solar_file)
# et = ElementTree.XML(fp.read())
# filename_encountered = False
i = 0
folders_count = 5484
div_i = 0
for div in et.iter('div'):
bibl = div.find('bibl')
file_name = bibl.get('n')
file_name = file_name.replace('/', '_')
print(f'{i * 100 / folders_count} % : {file_name}')
i += 1
# if i * 100 / folders_count > 50:
# filename_encountered = True
# # if file_name == 'KUS-G-slo-4-GO-E-2009-10071':
# # filename_encountered = True
# if i * 100 / folders_count > 51:
# filename_encountered = False
#
# if file_name == 'KUS-G-slo-1-LJ-E-2009_2010-10540':
# # div_i -= 1
# continue
#
# if file_name == 'KUS-SI-slo-2-NM-E-2009_2010-20362' or file_name == 'KUS-OS-slo-9-SG-R-2009_2010-40129' or file_name == 'KUS-OS-slo-7-SG-R-2009_2010-40173':
# # div_i -= 1
# continue
#
# if not filename_encountered:
# div_i+=1
#
# continue
etree_source_paragraphs = []
etree_target_paragraphs = []
# paragraph_edges = []
paragraphs = div.findall('p')
par_i = 0
for paragraph in paragraphs:
etree_source_sentences = []
etree_target_sentences = []
for sentence_id, source_conllu_annotated in enumerate(annotated_source_divs[div_i][par_i]):
if len(source_conllu_annotated) > 0:
source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
if len(source_conllu_annotated) > 0:
etree_source_sentences.append(construct_sentence_from_list(str(sentence_id + 1), source_conllu_parsed, True))
for sentence_id, target_conllu_annotated in enumerate(annotated_target_divs[div_i][par_i]):
if len(target_conllu_annotated) > 0:
target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
if len(target_conllu_annotated) > 0:
etree_target_sentences.append(construct_sentence_from_list(str(sentence_id + 1), target_conllu_parsed, False))
etree_source_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_source_sentences, True))
etree_target_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_target_sentences, False))
par_i += 1
etree_bibl = convert_bibl(bibl)
etree_source_divs.append((etree_source_paragraphs, copy.deepcopy(etree_bibl), paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's'))
etree_target_divs.append((etree_target_paragraphs, copy.deepcopy(etree_bibl), paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't'))
div_i += 1
print('APPENDING DOCUMENT...')
etree_source_documents.append(
TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's',
etree_source_divs, etree_target_divs))
etree_target_documents.append(
TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't',
etree_target_divs, etree_source_divs))
print('BUILDING TEI DOCUMENTS...')
etree_source = build_tei_etrees(etree_source_documents)
etree_target = build_tei_etrees(etree_target_documents)
print('Writting all but complete')
with open(os.path.join(args.results_folder, f"source.xml"), 'w') as sf:
sf.write(etree.tostring(etree_source[0], pretty_print=True, encoding='utf-8').decode())
with open(os.path.join(args.results_folder, f"target.xml"), 'w') as tf:
tf.write(etree.tostring(etree_target[0], pretty_print=True, encoding='utf-8').decode())
print('COMPLETE TREE CREATION...')
complete_etree = build_complete_tei(copy.deepcopy(etree_source), copy.deepcopy(etree_target), etree_links)
# complete_etree = build_complete_tei(etree_source, etree_target, etree_links)
print('WRITING COMPLETE TREE')
with open(os.path.join(args.results_folder, f"complete.xml"), 'w') as tf:
tf.write(etree.tostring(complete_etree, pretty_print=True, encoding='utf-8').decode())

File diff suppressed because it is too large Load Diff

1226
svala2tei_solar.py Normal file

File diff suppressed because it is too large Load Diff