Fixed some bugs.

This commit is contained in:
Luka 2022-05-30 07:07:11 +02:00
parent ecaaecb459
commit 5ec5cf3a28
2 changed files with 309 additions and 129 deletions

View File

@ -142,14 +142,6 @@ class TeiDocument:
text = etree.SubElement(root, 'text')
body = etree.SubElement(text, 'body')
for paras, bibl in self.divs:
div = etree.Element('div')
set_xml_attr(div, 'id', xml_id)
div.append(bibl)
for para in paras:
div.append(para.as_xml())
body.append(div)
encoding_desc = etree.SubElement(tei_header, 'encodingDesc')
tags_decl = etree.SubElement(encoding_desc, 'tagsDecl')
namespace = etree.SubElement(tags_decl, 'namespace')
@ -159,6 +151,16 @@ class TeiDocument:
tag_usage = etree.SubElement(namespace, 'tagUsage')
tag_usage.set('gi', tag)
tag_usage.set('occurs', str(count))
for paras, bibl, div_id in self.divs:
div = etree.Element('div')
set_xml_attr(div, 'id', div_id)
div.append(bibl)
for para in paras:
div.append(para.as_xml())
body.append(div)
return root
def add_paragraph(self, paragraph):
@ -245,7 +247,7 @@ def build_links(all_edges):
if len(token_edges['source_ids']) > 0:
random_source_id = token_edges['source_ids'][0]
sentence_id += '.'.join(random_source_id.split('.')[:3])
elif len(token_edges['target_ids']) > 0:
if len(token_edges['target_ids']) > 0:
random_target_id = token_edges['target_ids'][0]
if len(token_edges['source_ids']) > 0:
sentence_id += ' #'

View File

@ -2,6 +2,7 @@ import argparse
import json
import logging
import os
import pickle
import shutil
import time
from xml.etree import ElementTree
@ -55,9 +56,9 @@ def create_edges_list(target_ids, links_ids_mapper):
SKIP_IDS = ['solar2284s.1.1.1']
def create_edges(svala_data, source_par, target_par):
# if source_par and source_par[0]:
# if source_par[0][0]['id'] in SKIP_IDS:
# return []
if source_par and source_par[0]:
if source_par[0][0]['id'] in SKIP_IDS:
return []
# # print(source_par[0][0]['id'])
# if source_par[0][0]['id'] == 'solar2440s.5.1.1':
# print('pause!')
@ -132,8 +133,8 @@ def create_edges(svala_data, source_par, target_par):
for active_source_sentence_i, active_source_sentence in enumerate(source_edges):
for source_edge in active_source_sentence:
print(source_edge)
# if 'e-s261-t261' == source_edge:
# print(source_edge)
# if 'e-s7-t8' == source_edge:
# print('aaa')
# if 'e-s253-s254-s255-s256-s257-s258-s259-s260' == source_edge:
# print('aaa')
@ -145,8 +146,7 @@ def create_edges(svala_data, source_par, target_par):
edges_processed.add(source_edge)
elif target_edges_set and source_edge in target_edges_set[active_target_sentence_i]:
# if 'e-s120-t121' == source_edge:
# print('aaa')
# if 'e-s119-t119' == source_edge:
# print('aaa')
if source_edge not in edges_processed:
@ -318,8 +318,8 @@ def create_edges(svala_data, source_par, target_par):
if not source_ok_all:
source_sent_id += 1
if edge_id == 'e-s590-t590':
print(edge_id)
# if edge_id == 'e-s590-t590':
# print(edge_id)
target_ok = [el[0] == 's' or el in target_sentence_ids[target_sent_id] for el in ids] if target_sentence_ids else []
target_ok_all = all(target_ok)
@ -746,7 +746,7 @@ def create_conllu(interest_list, sentence_string_id):
return conllu_result.serialize()
def process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func, nlp, complete_source_conllu, complete_target_conllu):
def process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func):
etree_source_sentences = []
etree_target_sentences = []
@ -755,6 +755,9 @@ def process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_erro
par_source = []
par_target = []
source_conllus = []
target_conllus = []
for sentence_id, sentence in enumerate(sentences):
source = []
target = []
@ -788,34 +791,40 @@ def process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_erro
par_target.append(target)
# sentence_edges.append(edges)
source_conllu = ''
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
target_conllu = ''
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
if len(source) > 0:
source_conllu_annotated = nlp(source_conllu).to_conll()
if len(target) > 0:
target_conllu_annotated = nlp(target_conllu).to_conll()
source_conllus.append(source_conllu)
target_conllus.append(target_conllu)
if len(source) > 0:
complete_source_conllu += source_conllu_annotated
if len(target) > 0:
complete_target_conllu += target_conllu_annotated
if len(source) > 0:
source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
if len(target) > 0:
target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
if len(source) > 0:
etree_source_sentences.append(construct_sentence_from_list(str(sentence_id), source_conllu_parsed, True))
if len(target) > 0:
etree_target_sentences.append(construct_sentence_from_list(str(sentence_id), target_conllu_parsed, False))
# if len(source) > 0:
# source_conllu_annotated = nlp(source_conllu).to_conll()
# if len(target) > 0:
# target_conllu_annotated = nlp(target_conllu).to_conll()
#
# if len(source) > 0:
# complete_source_conllu += source_conllu_annotated
# if len(target) > 0:
# complete_target_conllu += target_conllu_annotated
#
# if len(source) > 0:
# source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
# if len(target) > 0:
# target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
#
# if len(source) > 0:
# etree_source_sentences.append(construct_sentence_from_list(str(sentence_id), source_conllu_parsed, True))
# if len(target) > 0:
# etree_target_sentences.append(construct_sentence_from_list(str(sentence_id), target_conllu_parsed, False))
sentence_edges = create_edges(svala_data, par_source, par_target)
return etree_source_sentences, etree_target_sentences, sentence_edges, complete_source_conllu, complete_target_conllu
# return etree_source_sentences, etree_target_sentences, sentence_edges, complete_source_conllu, complete_target_conllu
return sentence_edges, source_conllus, target_conllus
def read_raw_text(path):
@ -904,9 +913,9 @@ def update_ids(pretag, in_list):
el['id'] = f'{pretag}.{el["id"]}'
def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func, nlp, complete_source_conllu, complete_target_conllu, source_raw_text, target_raw_text, nlp_tokenize):
etree_source_sentences = []
etree_target_sentences = []
def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func, source_raw_text, target_raw_text, nlp_tokenize):
# etree_source_sentences = []
# etree_target_sentences = []
sentence_edges = []
if source_raw_text is not None:
@ -924,6 +933,8 @@ def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_err
par_source = []
par_target = []
sentences_len = len(sentences)
source_conllus = []
target_conllus = []
if source_raw_text is not None:
sentences_len = max(sentences_len, len(source_res))
if target_raw_text is not None:
@ -982,6 +993,7 @@ def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_err
source = source_res[sentence_id - 1]
update_ids(f'{sentence_string_id_split[0]}s.{".".join(sentence_string_id_split[1:])}', source)
par_source.append(source)
source_conllu = ''
if len(source) > 0:
source_conllu = create_conllu(source, sentence_string_id)
if target_raw_text is not None and sentence_id - 1 < len(target_res):
@ -994,28 +1006,31 @@ def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_err
if target_raw_text is None:
par_target.append(target)
target_conllu = ''
if len(target) > 0:
target_conllu = create_conllu(target, sentence_string_id)
if len(source) > 0:
source_conllu_annotated = nlp(source_conllu).to_conll()
if len(target) > 0:
target_conllu_annotated = nlp(target_conllu).to_conll()
if len(source) > 0:
complete_source_conllu += source_conllu_annotated
if len(target) > 0:
complete_target_conllu += target_conllu_annotated
if len(source) > 0:
source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
if len(target) > 0:
target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
if len(source) > 0:
etree_source_sentences.append(construct_sentence_from_list(str(sentence_id), source_conllu_parsed, True))
if len(target) > 0:
etree_target_sentences.append(construct_sentence_from_list(str(sentence_id), target_conllu_parsed, False))
source_conllus.append(source_conllu)
target_conllus.append(target_conllu)
# if len(source) > 0:
# source_conllu_annotated = nlp(source_conllu).to_conll()
# if len(target) > 0:
# target_conllu_annotated = nlp(target_conllu).to_conll()
#
# if len(source) > 0:
# complete_source_conllu += source_conllu_annotated
# if len(target) > 0:
# complete_target_conllu += target_conllu_annotated
#
# if len(source) > 0:
# source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
# if len(target) > 0:
# target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
#
# if len(source) > 0:
# etree_source_sentences.append(construct_sentence_from_list(str(sentence_id), source_conllu_parsed, True))
# if len(target) > 0:
# etree_target_sentences.append(construct_sentence_from_list(str(sentence_id), target_conllu_parsed, False))
# reannotate svala_ids
if source_raw_text is None:
@ -1025,24 +1040,28 @@ def process_obeliks_paragraph(sentences, paragraph, svala_i, svala_data, add_err
sentence_edges = create_edges(svala_data, par_source, par_target)
return etree_source_sentences, etree_target_sentences, sentence_edges, complete_source_conllu, complete_target_conllu
return sentence_edges, source_conllus, target_conllus
def process_file(et, args, nlp, nlp_tokenize):
if os.path.exists(args.results_folder):
shutil.rmtree(args.results_folder)
os.mkdir(args.results_folder)
etree_source_documents = []
etree_target_documents = []
etree_source_divs = []
etree_target_divs = []
def tokenize(args):
if os.path.exists(args.tokenization_interprocessing) and not args.overwrite_tokenization:
print('READING AND MERGING...')
with open(args.tokenization_interprocessing, 'rb') as rp:
tokenized_source_divs, tokenized_target_divs, document_edges = pickle.load(rp)
return tokenized_source_divs, tokenized_target_divs, document_edges
complete_source_conllu = ''
complete_target_conllu = ''
print('TOKENIZING...')
with open(args.solar_file, 'r') as fp:
logging.info(args.solar_file)
et = ElementTree.XML(fp.read())
document_edges = []
nlp_tokenize = classla.Pipeline('sl', processors='tokenize', pos_lemma_pretag=True)
filename_encountered = False
i = 0
folders_count = 5484
tokenized_source_divs = []
tokenized_target_divs = []
document_edges = []
for div in et.iter('div'):
bibl = div.find('bibl')
file_name = bibl.get('n')
@ -1050,13 +1069,13 @@ def process_file(et, args, nlp, nlp_tokenize):
print(f'{i*100/folders_count} % : {file_name}')
i += 1
# if file_name == 'S20-PI-slo-2-SG-D-2016_2017-30479-12.txt':
# if file_name == 'KUS-G-slo-1-LJ-E-2009_2010-10602':
if i*100/folders_count > 40:
filename_encountered = True
# if i*100/folders_count > 50:
# filename_encountered = False
if not filename_encountered:
continue
# if file_name == 'KUS-OS-slo-8-KR-R-2010-40088':
# # if i*100/folders_count > 40:
# filename_encountered = True
# # if i*100/folders_count > 41:
# # filename_encountered = False
# if not filename_encountered:
# continue
svala_path = os.path.join(args.svala_folder, file_name)
corrected_svala_path = os.path.join(args.corrected_svala_folder, file_name)
@ -1074,8 +1093,10 @@ def process_file(et, args, nlp, nlp_tokenize):
svala_dict.update(corrected_svala_dict)
etree_source_paragraphs = []
etree_target_paragraphs = []
# etree_source_paragraphs = []
# etree_target_paragraphs = []
tokenized_source_paragraphs = []
tokenized_target_paragraphs = []
paragraph_edges = []
paragraphs = div.findall('p')
@ -1102,46 +1123,85 @@ def process_file(et, args, nlp, nlp_tokenize):
target_raw_text = os.path.join(raw_texts_path, target_filename) if os.path.exists(os.path.join(raw_texts_path, target_filename)) else None
if not (source_raw_text or target_raw_text):
etree_source_sentences, etree_target_sentences, sentence_edges, complete_source_conllu, complete_target_conllu = process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func, nlp,
complete_source_conllu, complete_target_conllu)
sentence_edges, tokenized_source_sentences, tokenized_target_sentences = process_solar2_paragraph(sentences, paragraph, svala_i, svala_data, add_errors_func)
else:
etree_source_sentences, etree_target_sentences, sentence_edges, complete_source_conllu, complete_target_conllu = process_obeliks_paragraph(sentences, paragraph, svala_i,
svala_data, add_errors_func, nlp, complete_source_conllu, complete_target_conllu, source_raw_text, target_raw_text, nlp_tokenize)
sentence_edges, tokenized_source_sentences, tokenized_target_sentences = process_obeliks_paragraph(sentences, paragraph, svala_i,
svala_data, add_errors_func, source_raw_text, target_raw_text, nlp_tokenize)
etree_source_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_source_sentences, True))
etree_target_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_target_sentences, False))
tokenized_source_paragraphs.append(tokenized_source_sentences)
tokenized_target_paragraphs.append(tokenized_target_sentences)
# etree_source_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_source_sentences, True))
# etree_target_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_target_sentences, False))
paragraph_edges.append(sentence_edges)
etree_bibl = convert_bibl(bibl)
etree_source_divs.append((etree_source_paragraphs, copy.deepcopy(etree_bibl)))
etree_target_divs.append((etree_target_paragraphs, copy.deepcopy(etree_bibl)))
# etree_bibl = convert_bibl(bibl)
tokenized_source_divs.append(tokenized_source_paragraphs)
tokenized_target_divs.append(tokenized_target_paragraphs)
# etree_source_divs.append((etree_source_paragraphs, copy.deepcopy(etree_bibl)))
# etree_target_divs.append((etree_target_paragraphs, copy.deepcopy(etree_bibl)))
document_edges.append(paragraph_edges)
print('APPENDING DOCUMENT...')
etree_source_documents.append(TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's', etree_source_divs))
etree_target_documents.append(TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't', etree_target_divs))
with open(args.tokenization_interprocessing, 'wb') as wp:
pickle.dump((tokenized_source_divs, tokenized_target_divs, document_edges), wp)
print('BUILDING TEI DOCUMENTS...')
etree_source = build_tei_etrees(etree_source_documents)
etree_target = build_tei_etrees(etree_target_documents)
return tokenized_source_divs, tokenized_target_divs, document_edges
print('BUILDING LINKS...')
etree_links = build_links(document_edges)
def annotate(tokenized_source_divs, tokenized_target_divs, args):
if os.path.exists(args.annotation_interprocessing) and not args.overwrite_annotation:
print('READING...')
with open(args.annotation_interprocessing, 'rb') as rp:
annotated_source_divs, annotated_target_divs = pickle.load(rp)
return annotated_source_divs, annotated_target_divs
nlp = classla.Pipeline('sl', pos_use_lexicon=True, pos_lemma_pretag=False, tokenize_pretokenized="conllu",
type='standard_jos')
annotated_source_divs = []
complete_source_conllu = ''
print('ANNOTATING SOURCE...')
for i, div in enumerate(tokenized_source_divs):
print(f'{str(i*100/len(tokenized_source_divs))}')
annotated_source_pars = []
for par in div:
annotated_source_sens = []
for sen in par:
source_conllu_annotated = nlp(sen).to_conll() if sen else ''
annotated_source_sens.append(source_conllu_annotated)
complete_source_conllu += source_conllu_annotated
annotated_source_pars.append(annotated_source_sens)
annotated_source_divs.append(annotated_source_pars)
annotated_target_divs = []
complete_target_conllu = ''
print('ANNOTATING TARGET...')
for i, div in enumerate(tokenized_target_divs):
print(f'{str(i * 100 / len(tokenized_target_divs))}')
annotated_target_pars = []
for par in div:
annotated_target_sens = []
for sen in par:
target_conllu_annotated = nlp(sen).to_conll() if sen else ''
annotated_target_sens.append(target_conllu_annotated)
complete_target_conllu += target_conllu_annotated
annotated_target_pars.append(annotated_target_sens)
annotated_target_divs.append(annotated_target_pars)
print('Writting all but complete')
with open(os.path.join(args.results_folder, f"source.conllu"), 'w') as sf:
sf.write(complete_source_conllu)
with open(os.path.join(args.results_folder, f"target.conllu"), 'w') as sf:
sf.write(complete_target_conllu)
with open(os.path.join(args.results_folder, f"source.xml"), 'w') as sf:
sf.write(etree.tostring(etree_source[0], pretty_print=True, encoding='utf-8').decode())
with open(args.annotation_interprocessing, 'wb') as wp:
pickle.dump((annotated_source_divs, annotated_target_divs), wp)
with open(os.path.join(args.results_folder, f"target.xml"), 'w') as tf:
tf.write(etree.tostring(etree_target[0], pretty_print=True, encoding='utf-8').decode())
return annotated_source_divs, annotated_target_divs
def write_tei(annotated_source_divs, annotated_target_divs, document_edges, args):
print('BUILDING LINKS...')
etree_links = build_links(document_edges)
with open(os.path.join(args.results_folder, f"links.xml"), 'w') as tf:
tf.write(etree.tostring(etree_links, pretty_print=True, encoding='utf-8').decode())
@ -1149,40 +1209,154 @@ def process_file(et, args, nlp, nlp_tokenize):
with open(os.path.join(args.results_folder, f"links.json"), 'w') as jf:
json.dump(document_edges, jf, ensure_ascii=False, indent=" ")
print('WRITTING TEI...')
etree_source_documents = []
etree_target_documents = []
etree_source_divs = []
etree_target_divs = []
with open(args.solar_file, 'r') as fp:
logging.info(args.solar_file)
et = ElementTree.XML(fp.read())
filename_encountered = False
i = 0
folders_count = 5484
div_i = 0
for div in et.iter('div'):
bibl = div.find('bibl')
file_name = bibl.get('n')
file_name = file_name.replace('/', '_')
print(f'{i * 100 / folders_count} % : {file_name}')
i += 1
# if i * 100 / folders_count > 50:
# filename_encountered = True
# if i * 100 / folders_count > 100:
# filename_encountered = False
if file_name == 'KUS-G-slo-1-LJ-E-2009_2010-10540':
# div_i -= 1
continue
if file_name == 'KUS-SI-slo-2-NM-E-2009_2010-20362' or file_name == 'KUS-OS-slo-9-SG-R-2009_2010-40129' or file_name == 'KUS-OS-slo-7-SG-R-2009_2010-40173':
# div_i -= 1
continue
# if not filename_encountered:
# div_i+=1
#
# continue
# svala_path = os.path.join(args.svala_folder, file_name)
# corrected_svala_path = os.path.join(args.corrected_svala_folder, file_name)
# raw_texts_path = os.path.join(args.svala_generated_text_folder, file_name)
# skip files that are not svala annotated (to enable short examples)
# if not os.path.isdir(svala_path):
# continue
# svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in
# os.listdir(svala_path)]
# svala_dict = {e[0]: e[1] for e in svala_list}
# if os.path.exists(corrected_svala_path):
# corrected_svala_list = [[fname[:-13], fname] if 'problem' in fname else [fname[:-5], fname] for fname in
# os.listdir(corrected_svala_path)]
# corrected_svala_dict = {e[0]: e[1] for e in corrected_svala_list}
#
# svala_dict.update(corrected_svala_dict)
etree_source_paragraphs = []
etree_target_paragraphs = []
# paragraph_edges = []
paragraphs = div.findall('p')
par_i = 0
for paragraph in paragraphs:
sentences = paragraph.findall('s')
etree_source_sentences = []
etree_target_sentences = []
for sentence_id, sentence in enumerate(sentences):
# print(f'{div_i} + {par_i} + {sentence_id}')
source_conllu_annotated = annotated_source_divs[div_i][par_i][sentence_id]
target_conllu_annotated = annotated_target_divs[div_i][par_i][sentence_id]
if len(source_conllu_annotated) > 0:
source_conllu_parsed = conllu.parse(source_conllu_annotated)[0]
if len(target_conllu_annotated) > 0:
target_conllu_parsed = conllu.parse(target_conllu_annotated)[0]
if len(source_conllu_annotated) > 0:
etree_source_sentences.append(construct_sentence_from_list(str(sentence_id + 1), source_conllu_parsed, True))
if len(target_conllu_annotated) > 0:
etree_target_sentences.append(construct_sentence_from_list(str(sentence_id + 1), target_conllu_parsed, False))
etree_source_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_source_sentences, True))
etree_target_paragraphs.append(construct_paragraph_from_list(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0], paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[1], etree_target_sentences, False))
par_i += 1
etree_bibl = convert_bibl(bibl)
etree_source_divs.append((etree_source_paragraphs, copy.deepcopy(etree_bibl), paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's'))
etree_target_divs.append((etree_target_paragraphs, copy.deepcopy(etree_bibl), paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't'))
div_i += 1
print('APPENDING DOCUMENT...')
etree_source_documents.append(
TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 's',
etree_source_divs))
etree_target_documents.append(
TeiDocument(paragraph.attrib['{http://www.w3.org/XML/1998/namespace}id'].split('.')[0] + 't',
etree_target_divs))
print('BUILDING TEI DOCUMENTS...')
etree_source = build_tei_etrees(etree_source_documents)
etree_target = build_tei_etrees(etree_target_documents)
print('Writting all but complete')
with open(os.path.join(args.results_folder, f"source.xml"), 'w') as sf:
sf.write(etree.tostring(etree_source[0], pretty_print=True, encoding='utf-8').decode())
with open(os.path.join(args.results_folder, f"target.xml"), 'w') as tf:
tf.write(etree.tostring(etree_target[0], pretty_print=True, encoding='utf-8').decode())
# TODO STUCKS HERE
print('COMPLETE TREE CREATION...')
complete_etree = build_complete_tei(copy.deepcopy(etree_source), copy.deepcopy(etree_target), etree_links)
# complete_etree = build_complete_tei(etree_source, etree_target, etree_links)
print('WRITING FILES')
# with open(os.path.join(args.results_folder, f"source.conllu"), 'w') as sf:
# sf.write(complete_source_conllu)
#
# with open(os.path.join(args.results_folder, f"target.conllu"), 'w') as sf:
# sf.write(complete_target_conllu)
#
# with open(os.path.join(args.results_folder, f"source.xml"), 'w') as sf:
# sf.write(etree.tostring(etree_source[0], pretty_print=True, encoding='utf-8').decode())
#
# with open(os.path.join(args.results_folder, f"target.xml"), 'w') as tf:
# tf.write(etree.tostring(etree_target[0], pretty_print=True, encoding='utf-8').decode())
#
# with open(os.path.join(args.results_folder, f"links.xml"), 'w') as tf:
# tf.write(etree.tostring(etree_links, pretty_print=True, encoding='utf-8').decode())
print('WRITING COMPLETE TREE')
with open(os.path.join(args.results_folder, f"complete.xml"), 'w') as tf:
tf.write(etree.tostring(complete_etree, pretty_print=True, encoding='utf-8').decode())
# with open(os.path.join(args.results_folder, f"links.json"), 'w') as jf:
# json.dump(document_edges, jf, ensure_ascii=False, indent=" ")
def process_file(args):
if os.path.exists(args.results_folder):
shutil.rmtree(args.results_folder)
os.mkdir(args.results_folder)
# READ AND MERGE svala tokenization, solar2 tokenization and obeliks tokenization
tokenized_source_divs, tokenized_target_divs, document_edges = tokenize(args)
# ANNOTATE WITH CLASSLA
annotated_source_divs, annotated_target_divs = annotate(tokenized_source_divs, tokenized_target_divs, args)
# GENERATE TEI AND WRITE OUTPUT
write_tei(annotated_source_divs, annotated_target_divs, document_edges, args)
def main(args):
with open(args.solar_file, 'r') as fp:
logging.info(args.solar_file)
nlp = classla.Pipeline('sl', pos_use_lexicon=True, pos_lemma_pretag=False, tokenize_pretokenized="conllu", type='standard_jos')
nlp_tokenize = classla.Pipeline('sl', processors='tokenize', pos_lemma_pretag=True)
et = ElementTree.XML(fp.read())
process_file(et, args, nlp, nlp_tokenize)
process_file(args)
if __name__ == '__main__':
@ -1198,8 +1372,12 @@ if __name__ == '__main__':
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--svala_generated_text_folder', default='data/svala_generated_text.formatted',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--raw_conllu_interprocessing', default='data/processing.raw_conllu',
parser.add_argument('--tokenization_interprocessing', default='data/processing.tokenization',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--overwrite_tokenization', action='store_true', help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--annotation_interprocessing', default='data/processing.annotation',
help='input file in (gz or xml currently). If none, then just database is loaded')
parser.add_argument('--overwrite_annotation', action='store_true', help='input file in (gz or xml currently). If none, then just database is loaded')
args = parser.parse_args()
start = time.time()