cjvt-valency/dip_src/valency/seqparser/seqparser.py

285 lines
8.9 KiB
Python
Raw Permalink Normal View History

2019-03-07 08:00:01 +00:00
from bs4 import BeautifulSoup as BS
import re
from collections import defaultdict
from time import time
import pickle
import json
from copy import deepcopy as DC
# Match sese ordinals (1., 2., ...)
rord = re.compile(r"^ *[0-9]+\. *$")
# Get rid of accented characters.
intab = "ÁÉÍÓÚàáäçèéêìíîñòóôöùúüčŔŕ"
outtb = "AEIOUaaaceeeiiinoooouuučRr"
transtab = str.maketrans(intab, outtb)
class Seqparser:
def __init__(self):
pass
# main functions
def html_to_raw_pickle(self, sskj_html_filepath, raw_pickle_filepath):
entries = dict(self.parse_file(sskj_html_filepath, self.parse_line))
print("entries len: " + str(len(entries)))
with open(raw_pickle_filepath, "wb") as f:
tmpstr = json.dumps(dict(entries))
pickle.dump(tmpstr, f)
# debugging
def raw_pickle_to_parsed_pickle(
self, raw_pickle_filepath, parsed_pickle_filepath,
se_list_filepath
):
data = self.load_raw_pickle(raw_pickle_filepath)
print("raw_pickle data len: " + str(len(data)))
se_list = self.gen_se_list(data)
print("se_list len: " + str(len(se_list)))
with open(se_list_filepath, "wb") as f:
pickle.dump(se_list, f)
data1 = self.remove_se(data)
data2 = self.reorganize(data1, se_list)
print("data2 len: " + str(len(data2.keys())))
with open(parsed_pickle_filepath, "wb") as f:
pickle.dump(data2, f)
# helper html reading functions
def parse_file(self, path, f_parse_line):
tstart = time()
entries = defaultdict(list)
with open(path, "r") as f:
for line in f:
data = f_parse_line(line)
if data is not None:
entries[data["izt_clean"]].append(data)
print("parse_file({}) in {:.2f}s".format(path, time() - tstart))
return entries
def parse_line(self, line):
def helper_bv_set(g_or_p):
if g_or_p not in ["G", "P"]:
print("Err g_or_p.")
exit(1)
if data.get("bv") is not None:
if data["bv"] != g_or_p:
print(str(line))
# exit(1)
data["bv"] = g_or_p
data = {
"izt": "",
"izt_clean": "",
"senses": defaultdict(list)
}
soup = BS(line, "html.parser")
current_sense_id = "0"
for span in soup.find_all("span"):
# sense id
if span.string is not None:
rmatch = rord.match(span.string)
if rmatch is not None:
current_sense_id = rmatch.group().strip()
title = span.attrs.get("title")
if title is not None:
title = title.lower()
# only verbs and adjectives
if "glagol" in title:
helper_bv_set("G")
data["bv_full"] = title
elif "pridevn" in title:
helper_bv_set("P")
data["bv_full"] = title
# žšč
if title == "iztočnica":
data["izt"] = span.string
data["izt_clean"] = span.string.translate(transtab).lower()
# sense description
if title == "razlaga" and span.string is not None:
data["senses"][current_sense_id].append(
("razl", span.string))
if "pridevnik od" in span.string:
helper_bv_set("P")
if title == "sopomenka":
subspan = span.find_all("a")[0]
if subspan.string is not None:
data["senses"][current_sense_id].append(
("sopo", subspan.string))
# save verbs and adjectives
if (
("bv" not in data) or
(data["bv"] != "P" and data["bv"] != "G")
):
return None
# sanity check
if data["bv"] == "P" and " se" in data["izt_clean"]:
print(data)
exit(1)
# append _ to adjective keywords
if data["bv"] == "P":
data["izt_clean"] = data["izt_clean"] + "_"
# cleanup
if "bv" not in data:
print("Should not be here (no bv).")
exit(1)
del(data["bv"])
if "bv_full" in data:
del(data["bv_full"])
return data
# helper functions
def load_raw_pickle(self, raw_pickle_filepath):
with open(raw_pickle_filepath, "rb") as f:
tmpstr = pickle.load(f)
return json.loads(tmpstr)
def helper_loop(self, data, fnc):
for k, lst in data.items():
for el in lst:
fnc(el)
def gen_se_list(self, data):
def fnc1(el):
ic = el["izt_clean"]
if " se" in ic:
se_list.append(ic)
def fnc2(el):
ic = el["izt_clean"]
if ic in se_pruned:
se_pruned.remove(ic)
# hw entries that only exist with " se"
se_list = []
self.helper_loop(data, fnc1)
se_pruned = set([hw.split(" se")[0] for hw in se_list])
self.helper_loop(data, fnc2)
return sorted(list(se_pruned))
def remove_se(self, data):
def fnc1(el):
nel = DC(el)
ic = nel["izt_clean"]
if " se" in ic:
nic = ic.split(" se")[0]
nel["izt_clean"] = nic
data_new[nel["izt_clean"]].append(nel)
data_new = defaultdict(list)
self.helper_loop(data, fnc1)
return dict(data_new)
def reorganize(self, data, se_list):
# some hw entries have several headwords,
# some senses have subsenses
# index everything, make 1 object per hw
def helper_prune(sense_str):
# remove space padding
sense_str = sense_str.strip()
if len(sense_str) == 1:
return sense_str
# remove banned characters from string ending
banned = ": ; . , - ! ?".split(" ")
if sense_str[-1] in banned:
return sense_str[:-1]
return sense_str
data_new = {}
for k, lst in data.items():
new_el = {
"hw": k,
"has_se": k in se_list,
"senses": []
}
# if there is a single hw entry, hw_id is 0
if len(lst) == 1:
homonym_id = -1
else:
homonym_id = 0
# loop homonyms
for el in lst:
homonym_id += 1
# loop top lvl sense ids
for sense_id, sens_lst in el["senses"].items():
# loop subsenses
for i, sens in enumerate(sens_lst):
nsid = sense_id.split(".")[0]
if len(sens_lst) == 1:
nsid += "-0"
else:
nsid += ("-" + str(i + 1))
new_sense = {
"homonym_id": homonym_id,
# sense_id: sense_id-subsense_id
"sense_id": nsid,
"sense_type": sens[0],
"sense_desc": helper_prune(sens[1]),
}
new_el["senses"].append(new_sense)
hw = new_el["hw"]
if hw in data_new:
print("Shouldn't be here.")
print(new_el)
exit(1)
data_new[hw] = DC(new_el)
# return data_new
# check
for hw, el in data_new.items():
for sens in el["senses"]:
if sens["sense_desc"] is None:
print(sens)
return data_new
def plst(lst):
for el in lst:
print(el)
if __name__ == "__main__":
datapath = "../../../data"
html_filepath = datapath + "/sskj/sskj2_v1.html"
raw_pickle_filepath = datapath + "/tmp_pickles/raw_sskj.pickle"
parsed_pickle_filepath = datapath + "/no_del_pickles/sskj_senses.pickle"
se_list_filepath = datapath + "/no_del_pickles/se_list.pickle"
p = Seqparser()
if True:
print("html_to_raw_pickle({}, {})".format(
html_filepath, raw_pickle_filepath))
print("Big file, this might take a while (2 min).")
tstart = time()
p.html_to_raw_pickle(html_filepath, raw_pickle_filepath)
print("Finished in {:.2f}.".format(time() - tstart))
if True:
print("raw_pickle_to_parsed_pickle({}, {}, {})".format(
raw_pickle_filepath, parsed_pickle_filepath, se_list_filepath))
tstart = time()
p.raw_pickle_to_parsed_pickle(
raw_pickle_filepath, parsed_pickle_filepath, se_list_filepath)
print("Finished in {:.2f}.".format(time() - tstart))
print("Done.")