You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

595 lines
34 KiB

import sys
from copy import copy
from pyconll.unit import Token
from Value import Value
class Tree(object):
def __init__(self, form, lemma, upos, xpos, deprel, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict, head):
# form_unicode = str(form).encode("utf-8")
if form not in form_dict:
form_dict[form] = Value(form)
self.form = form_dict[form]
if lemma not in lemma_dict:
lemma_dict[lemma] = Value(lemma)
self.lemma = lemma_dict[lemma]
if upos not in upos_dict:
upos_dict[upos] = Value(upos)
self.upos = upos_dict[upos]
if xpos not in xpos_dict:
xpos_dict[xpos] = Value(xpos)
self.xpos = xpos_dict[xpos]
if deprel not in deprel_dict:
deprel_dict[deprel] = Value(deprel)
self.deprel = deprel_dict[deprel]
# self.position = position
self.parent = head
self.l_children = []
self.r_children = []
self.index = 0
def add_l_child(self, child):
child.index = len(self.l_children)
self.l_children.append(child)
def add_r_child(self, child):
child.index = len(self.l_children) + len(self.r_children)
self.r_children.append(child)
def set_parent(self, parent):
self.parent = parent
def fits_static_requirements(self, query_tree):
return ('form' not in query_tree or query_tree['form'] == self.form.get_value()) and \
('lemma' not in query_tree or query_tree['lemma'] == self.lemma.get_value()) and \
('upos' not in query_tree or query_tree['upos'] == self.upos.get_value()) and \
('xpos' not in query_tree or query_tree['xpos'] == self.xpos.get_value()) and \
('deprel' not in query_tree or query_tree['deprel'] == self.deprel.get_value())
def generate_children_queries(self, all_query_indices, children):
partial_results = {}
# list of pairs (index of query in group, group of query, is permanent)
child_queries_metadata = []
for child_index, child in enumerate(children):
new_queries = []
# add continuation queries to children
for result_part_index, result_index, is_permanent in child_queries_metadata:
if result_index in partial_results and result_part_index in partial_results[result_index] and len(partial_results[result_index][result_part_index]) > 0:
if len(all_query_indices[result_index][0]) > result_part_index + 1:
new_queries.append((result_part_index + 1, result_index, is_permanent))
# else:
# completed_subtrees.append((child, result_index))
child_queries_metadata = new_queries
# add new queries to children
for result_index, (group, is_permanent) in enumerate(all_query_indices):
# check if node has enough children for query to be possible
if len(children) - len(group) >= child_index:
child_queries_metadata.append((0, result_index, is_permanent))
child_queries = []
for result_part_index, result_index, _ in child_queries_metadata:
child_queries.append(all_query_indices[result_index][0][result_part_index])
partial_results = yield child, child_queries, child_queries_metadata
yield None, None, None
def add_subtrees(self, old_subtree, new_subtree):
old_subtree.extend(new_subtree)
def get_results(self, partial_results_dict, result_index, result_part, outcome, last_result_part):
# save results for later usage
# if result index already in and element 0 exists (otherwise error)
if result_index in partial_results_dict and 0 in partial_results_dict[result_index]:
if result_part - 1 in partial_results_dict[result_index]:
if result_part in partial_results_dict[result_index]:
partial_results_dict[result_index][result_part].extend(self.merge_results(partial_results_dict[result_index][result_part - 1], outcome))
else:
partial_results_dict[result_index][result_part] = self.merge_results(partial_results_dict[result_index][result_part - 1], outcome)
# extend one word layer with output
else:
partial_results_dict[result_index][0].extend(outcome)
else:
partial_results_dict[result_index] = {0: outcome}
if last_result_part - 1 in partial_results_dict[result_index]:
return partial_results_dict[result_index].pop(last_result_part - 1)
return []
def group_results(self, new_partial_subtrees, child_queries_metadata, all_query_indices, partial_results_dict, partial_subtrees):
for outcome, (result_part, result_index, is_permanent) in zip(new_partial_subtrees, child_queries_metadata):
if outcome:
new_results = self.get_results(partial_results_dict, result_index, result_part, outcome, len(all_query_indices[result_index][0]))
if new_results:
self.add_subtrees(partial_subtrees[result_index], new_results)
else:
if not is_permanent:
partial_subtrees[result_index].append([])
def get_all_query_indices_old(self, temporary_query_trees_size, completed_subtrees_size, permanent_query_trees, l_all_query_indices, children, create_output_string):
partial_subtrees = [[] for i in range(completed_subtrees_size + temporary_query_trees_size)]
completed_subtrees = [[] for i in range(completed_subtrees_size)]
# list of pairs (index of query in group, group of query)
partial_results_dict = {}
children_queries_generator = self.generate_children_queries(l_all_query_indices, children)
child_index = 0
child, child_queries, child_queries_metadata = next(children_queries_generator)
while child:
# obtain children results
new_partial_subtrees, new_completed_subtrees = child.get_subtrees(permanent_query_trees, child_queries, create_output_string)
self.group_results(new_partial_subtrees, child_queries_metadata, l_all_query_indices,
partial_results_dict, partial_subtrees)
for i in range(len(new_completed_subtrees)):
completed_subtrees[i].extend(new_completed_subtrees[i])
child, child_queries, child_queries_metadata = children_queries_generator.send(partial_results_dict)
child_index += 1
return partial_subtrees, completed_subtrees
def get_all_query_indices(self, temporary_query_trees_size, completed_subtrees_size, permanent_query_trees, all_query_indices, children, create_output_string):
# l_partial_subtrees, l_completed_subtrees = self.get_all_query_indices(len(temporary_query_trees),
# len(permanent_query_trees),
# permanent_query_trees,
# l_all_query_indices, self.l_children,
# create_output_string)
partial_subtrees = [[] for i in range(completed_subtrees_size + temporary_query_trees_size)]
partial_subtrees_architectures = [[] for i in range(completed_subtrees_size + temporary_query_trees_size)]
completed_subtrees = [[] for i in range(completed_subtrees_size)]
# list of pairs (index of query in group, group of query)
partial_results_dict = {}
# TODO try to erase!!!
child_queries = [all_query_indice[0] for all_query_indice in all_query_indices]
answers_lengths = [len(query) for query in child_queries]
child_queries_flatten = [query_part for query in child_queries for query_part in query]
all_new_partial_answers = [[] for query_part in child_queries_flatten]
all_new_partial_answers_architecture = [[] for query_part in child_queries_flatten]
# ask children all queries/partial queries
for child in children:
# obtain children results
new_partial_answers_architecture, new_partial_answers, new_completed_subtrees = child.get_subtrees(permanent_query_trees, child_queries_flatten,
create_output_string)
assert len(new_partial_answers) == len(child_queries_flatten)
for i, new_partial_subtree in enumerate(new_partial_answers):
all_new_partial_answers[i].append(new_partial_subtree)
all_new_partial_answers_architecture[i].append(new_partial_answers_architecture[i])
# add 6 queries from 3 split up
# self.group_results(new_partial_subtrees, child_queries_metadata, all_query_indices,
# partial_results_dict, partial_subtrees)
for i in range(len(new_completed_subtrees)):
completed_subtrees[i].extend(new_completed_subtrees[i])
# merge answers in appropriate way
i = 0
# iterate over all answers per queries
for answer_i, answer_length in enumerate(answers_lengths):
# iterate over answers of query
partial_subtrees[answer_i], partial_subtrees_architectures[answer_i] = self.create_answers(all_new_partial_answers[i:i + answer_length], all_new_partial_answers_architecture[i:i + answer_length], answer_length, len(self.l_children))
# while i < answers_length:
# self.create_grouped_answers()
# i += 1
i += answer_length
# merged_results = []
# for old_result in old_results:
# for new_result in new_results:
# merged_results.append(old_result + new_result)
# return merged_results
# children_queries_generator = self.generate_children_queries(all_query_indices, children)
#
# child_index = 0
# child, child_queries, child_queries_metadata = next(children_queries_generator)
# while child:
# # obtain children results
# new_partial_subtrees, new_completed_subtrees = child.get_subtrees(permanent_query_trees, child_queries, create_output_string)
#
# self.group_results(new_partial_subtrees, child_queries_metadata, all_query_indices,
# partial_results_dict, partial_subtrees)
#
# for i in range(len(new_completed_subtrees)):
# completed_subtrees[i].extend(new_completed_subtrees[i])
# child, child_queries, child_queries_metadata = children_queries_generator.send(partial_results_dict)
# child_index += 1
return partial_subtrees_architectures, partial_subtrees, completed_subtrees
def order_dependent_queries(self, active_permanent_query_trees, active_temporary_query_trees, l_partial_subtrees, l_partial_subtrees_architecture,
r_partial_subtrees, r_partial_subtrees_architecture, create_output_string, merged_partial_subtrees, merged_partial_subtrees_architecture, i, i_left, i_right):
# string_output = ''
if i < len(active_permanent_query_trees):
if ('l_children' in active_permanent_query_trees[i] and 'r_children' in active_permanent_query_trees[i]):
merged_partial_subtree = self.create_output_left_children(l_partial_subtrees[i_left], [create_output_string(self)])
merged_partial_subtrees.append(
self.create_output_right_children(merged_partial_subtree, r_partial_subtrees[i_right]))
merged_partial_subtree_architecture = self.create_output_left_children(l_partial_subtrees_architecture[i_left], [str([self.index])])
merged_partial_subtrees_architecture.append(
self.create_output_right_children(merged_partial_subtree_architecture, l_partial_subtrees_architecture[i_right]))
# merged_partial_subtree = self.merge_results(l_partial_subtrees[i_left],
# [[create_output_string(self)]])
# merged_partial_subtrees.append(
# self.merge_results(merged_partial_subtree, r_partial_subtrees[i_right]))
# # merged_partial_subtrees.append(self.merge_results(l_partial_subtrees[i], [[create_output_string(self)]]))
i_left += 1
i_right += 1
elif 'l_children' in active_permanent_query_trees[i]:
merged_partial_subtrees.append(self.create_output_left_children(l_partial_subtrees[i_left], [create_output_string(self)]))
merged_partial_subtrees_architecture.append(self.create_output_left_children(l_partial_subtrees_architecture[i_left], [str([self.index])]))
# merged_partial_subtrees.append(
# self.merge_results(l_partial_subtrees[i_left], [[create_output_string(self)]]))
i_left += 1
elif 'r_children' in active_permanent_query_trees[i]:
merged_partial_subtrees.append(self.create_output_right_children([create_output_string(self)], r_partial_subtrees[i_right]))
merged_partial_subtrees_architecture.append(
self.create_output_right_children(r_partial_subtrees_architecture[i_left], [str([self.index])]))
# merged_partial_subtrees.append(
# self.merge_results([[create_output_string(self)]], r_partial_subtrees[i_right]))
i_right += 1
else:
merged_partial_subtrees.append([create_output_string(self)])
merged_partial_subtrees_architecture.append([str([self.index])])
# merged_partial_subtrees.append([[create_output_string(self)]])
else:
if ('l_children' in active_temporary_query_trees[i - len(active_permanent_query_trees)] and 'r_children' in
active_temporary_query_trees[i - len(active_permanent_query_trees)]):
merged_partial_subtree = self.create_output_left_children(l_partial_subtrees[i_left],
[create_output_string(self)])
merged_partial_subtrees.append(
self.create_output_right_children(merged_partial_subtree, r_partial_subtrees[i_right]))
merged_partial_subtree_architecture = self.create_output_left_children(
l_partial_subtrees_architecture[i_left], [str([self.index])])
merged_partial_subtrees_architecture.append(
self.create_output_right_children(merged_partial_subtree_architecture,
l_partial_subtrees_architecture[i_right]))
# merged_partial_subtree = self.merge_results(l_partial_subtrees[i_left], [[create_output_string(self)]])
# merged_partial_subtrees.append(self.merge_results(merged_partial_subtree, r_partial_subtrees[i_right]))
# # merged_partial_subtrees.append(self.merge_results(l_partial_subtrees[i], [[create_output_string(self)]]))
i_left += 1
i_right += 1
elif 'l_children' in active_temporary_query_trees[i - len(active_permanent_query_trees)]:
merged_partial_subtrees.append(
self.create_output_left_children(l_partial_subtrees[i_left], [create_output_string(self)]))
merged_partial_subtrees_architecture.append(
self.create_output_left_children(l_partial_subtrees_architecture[i_left], [str([self.index])]))
# merged_partial_subtrees.append(
# self.merge_results(l_partial_subtrees[i_left], [[create_output_string(self)]]))
i_left += 1
elif 'r_children' in active_temporary_query_trees[i - len(active_permanent_query_trees)]:
merged_partial_subtrees.append(
self.create_output_right_children([create_output_string(self)], r_partial_subtrees[i_right]))
merged_partial_subtrees_architecture.append(
self.create_output_right_children(r_partial_subtrees_architecture[i_left], [str([self.index])]))
# merged_partial_subtrees.append(
# self.merge_results([[create_output_string(self)]], r_partial_subtrees[i_right]))
i_right += 1
else:
merged_partial_subtrees.append([create_output_string(self)])
merged_partial_subtrees_architecture.append([str([self.index])])
# merged_partial_subtrees.append([[create_output_string(self)]])
return i_left, i_right
def get_subtrees(self, permanent_query_trees, temporary_query_trees, create_output_string):
"""
:param permanent_query_trees:
:param temporary_query_trees:
"""
# list of all children queries grouped by parent queries
l_all_query_indices = []
r_all_query_indices = []
active_permanent_query_trees = []
for permanent_query_tree in permanent_query_trees:
if self.fits_static_requirements(permanent_query_tree):
if 'l_children' in permanent_query_tree and 'r_children' in permanent_query_tree:
permanent_query_tree['l_children'] += permanent_query_tree['r_children']
del(permanent_query_tree['r_children'])
elif 'r_children' in permanent_query_tree:
permanent_query_tree['l_children'] = permanent_query_tree['r_children']
del(permanent_query_tree['r_children'])
active_permanent_query_trees.append(permanent_query_tree)
if 'l_children' in permanent_query_tree:
l_all_query_indices.append((permanent_query_tree['l_children'], True))
if 'r_children' in permanent_query_tree:
r_all_query_indices.append((permanent_query_tree['l_children'], True))
# r_all_query_indices.append((permanent_query_tree['r_children'], True))
active_temporary_query_trees = []
successful_temporary_queries = []
for i, temporary_query_tree in enumerate(temporary_query_trees):
if self.fits_static_requirements(temporary_query_tree):
if 'l_children' in temporary_query_tree and 'r_children' in temporary_query_tree:
temporary_query_tree['l_children'] += temporary_query_tree['r_children']
del(temporary_query_tree['r_children'])
elif 'r_children' in temporary_query_tree:
temporary_query_tree['l_children'] = temporary_query_tree['r_children']
del(temporary_query_tree['r_children'])
active_temporary_query_trees.append(temporary_query_tree)
successful_temporary_queries.append(i)
# if 'l_children' in temporary_query_tree and 'r_children' in temporary_query_tree:
if 'l_children' in temporary_query_tree:
l_all_query_indices.append((temporary_query_tree['l_children'], False))
if 'r_children' in temporary_query_tree:
# r_all_query_indices.append((temporary_query_tree['r_children'], False))
r_all_query_indices.append((temporary_query_tree['l_children'], False))
# l_partial_subtrees, l_completed_subtrees = self.get_all_query_indices_old(len(temporary_query_trees), len(permanent_query_trees), permanent_query_trees, l_all_query_indices, self.l_children, create_output_string)
# r_partial_subtrees, r_completed_subtrees = self.get_all_query_indices_old(len(temporary_query_trees), len(permanent_query_trees), permanent_query_trees, r_all_query_indices, self.r_children, create_output_string)
all_query_indices = l_all_query_indices + r_all_query_indices
l_partial_subtrees_architecture, l_partial_subtrees, l_completed_subtrees = self.get_all_query_indices(len(temporary_query_trees),
len(permanent_query_trees),
permanent_query_trees,
all_query_indices, self.l_children + self.r_children,
create_output_string)
# r_partial_subtrees_architecture, r_partial_subtrees, r_completed_subtrees = self.get_all_query_indices(len(temporary_query_trees),
# len(permanent_query_trees),
# permanent_query_trees,
# r_all_query_indices, self.r_children,
# create_output_string)
r_partial_subtrees_architecture, r_partial_subtrees, r_completed_subtrees = [], [], []
merged_partial_subtrees = []
merged_partial_subtrees_architecture = []
i = 0
i_left = 0
i_right = 0
# go over all permanent and temporary query trees
while i < len(active_permanent_query_trees) + len(active_temporary_query_trees):
# permanent query trees always have left and right child
i_left, i_right = self.order_dependent_queries(active_permanent_query_trees, active_temporary_query_trees, l_partial_subtrees, l_partial_subtrees_architecture,
r_partial_subtrees, r_partial_subtrees_architecture, create_output_string, merged_partial_subtrees, merged_partial_subtrees_architecture, i, i_left, i_right)
# if i < len(active_permanent_query_trees):
# if ('l_children' in active_permanent_query_trees[i] and 'r_children' in active_permanent_query_trees[i]):
# merged_partial_subtree = self.merge_results(l_partial_subtrees[i_left],
# [[create_output_string(self)]])
# merged_partial_subtrees.append(
# self.merge_results(merged_partial_subtree, r_partial_subtrees[i_right]))
# # merged_partial_subtrees.append(self.merge_results(l_partial_subtrees[i], [[create_output_string(self)]]))
# i_left += 1
# i_right += 1
#
# elif 'l_children' in active_permanent_query_trees[i]:
# merged_partial_subtrees.append(
# self.merge_results(l_partial_subtrees[i_left], [[create_output_string(self)]]))
# i_left += 1
#
# elif 'r_children' in active_permanent_query_trees[i]:
# merged_partial_subtrees.append(
# self.merge_results([[create_output_string(self)]], r_partial_subtrees[i_right]))
# i_right += 1
# else:
# merged_partial_subtrees.append([[create_output_string(self)]])
# else:
# if ('l_children' in active_temporary_query_trees[i - len(active_permanent_query_trees)] and 'r_children' in active_temporary_query_trees[i - len(active_permanent_query_trees)]):
# merged_partial_subtree = self.merge_results(l_partial_subtrees[i_left], [[create_output_string(self)]])
# merged_partial_subtrees.append(self.merge_results(merged_partial_subtree, r_partial_subtrees[i_right]))
# # merged_partial_subtrees.append(self.merge_results(l_partial_subtrees[i], [[create_output_string(self)]]))
# i_left += 1
# i_right += 1
#
# elif 'l_children' in active_temporary_query_trees[i - len(active_permanent_query_trees)]:
# merged_partial_subtrees.append(self.merge_results(l_partial_subtrees[i_left], [[create_output_string(self)]]))
# i_left += 1
#
# elif 'r_children' in active_temporary_query_trees[i - len(active_permanent_query_trees)]:
# merged_partial_subtrees.append(self.merge_results([[create_output_string(self)]], r_partial_subtrees[i_right]))
# i_right += 1
# else:
# merged_partial_subtrees.append([[create_output_string(self)]])
# # if r_partial_subtrees[i]:
# # merged_partial_subtrees.append(self.merge_results(l_partial_subtrees[i], [[create_output_string(self)]]))
i += 1
completed_subtrees = l_completed_subtrees
# for i in range(len(permanent_query_trees)):
# for i in range(max(len(completed_subtrees), len(r_completed_subtrees), len(active_permanent_query_trees))):
for i in range(len(active_permanent_query_trees)):
# if 0 < len(active_permanent_query_trees):
completed_subtrees[i].extend(merged_partial_subtrees[i])
for i in range(len(r_completed_subtrees)):
completed_subtrees[i].extend(r_completed_subtrees[i])
# answers to valid queries
subtrees_architecture = [[] for i in range(len(temporary_query_trees))]
for inside_i, outside_i in enumerate(successful_temporary_queries):
subtrees_architecture[outside_i] = merged_partial_subtrees_architecture[len(active_permanent_query_trees) + inside_i]
# answers to valid queries
subtrees = [[] for i in range(len(temporary_query_trees))]
for inside_i, outside_i in enumerate(successful_temporary_queries):
subtrees[outside_i] = merged_partial_subtrees[
len(active_permanent_query_trees) + inside_i]
return subtrees_architecture, subtrees, completed_subtrees
# return merged_partial_subtrees_architecture[len(active_permanent_query_trees):], merged_partial_subtrees[len(active_permanent_query_trees):], completed_subtrees
@staticmethod
def merge_results(old_results, new_results):
merged_results = []
for old_result in old_results:
for new_result in new_results:
merged_results.append(old_result + new_result)
return merged_results
@staticmethod
def merge_answer(answer1, answer2, base_answer_i, answer_j):
merged_results = []
merged_indices = []
for answer1p_i, old_result in enumerate(answer1):
for answer2p_i, new_result in enumerate(answer2):
if answer1p_i != answer2p_i:
new_indices = [answer1p_i] + [answer2p_i]
sorted_indices = sorted(new_indices)
if sorted_indices in merged_indices:
test = merged_indices.index(sorted(new_indices))
# TODO add comparison answers with different indices if equal than ignore
merged_results.append(old_result + new_result)
merged_indices.append(new_indices)
return merged_results, merged_indices
@staticmethod
def create_output_left_children(left_children, new_results):
merged_results = []
for child in left_children:
for new_result in new_results:
res = ''
if type(child) == str:
res += '(' + child + ') < '
else:
for el in sorted(child):
res += '(' + el + ') < '
merged_results.append(res + new_result)
return merged_results
@staticmethod
def create_output_right_children(new_results, right_children):
merged_results = []
for child in right_children:
for new_result in new_results:
res = ''
if type(child) == str:
res += ' > (' + child + ')'
else:
for el in sorted(child):
res += ' > (' + el + ')'
merged_results.append(new_result + res)
# merged_results.append(new_result + ' > (' + child + ')')
return merged_results
@staticmethod
def create_answers(separated_answers, separated_answers_architecture, answer_length, l_children_len):
# TODO
node_order = False
partly_built_trees = [[None] * answer_length]
partly_built_trees_architecture = [[None] * answer_length]
partly_built_trees_architecture_indices = [[None] * answer_length]
built_trees = []
built_trees_architecture = []
built_trees_architecture_indices = []
# iterate over children first, so that new partly built trees are added only after all results of specific
# child are added
for child_i in range(len(separated_answers[0])):
new_partly_built_trees = []
new_partly_built_trees_architecture = []
new_partly_built_trees_architecture_indices = []
# iterate over answers parts
for answer_part_i in range(len(separated_answers)):
# necessary because some parts do not pass filters and are not added
# if child_i < len(separated_answers[answer_part_i]) and separated_answers[answer_part_i][child_i]:
if separated_answers[answer_part_i][child_i]:
for tree_part_i, tree_part in enumerate(partly_built_trees):
# if tree_part[answer_part_i] equals None add new element in its place
if not tree_part[answer_part_i]:
new_tree_part = copy(tree_part)
new_tree_part_architecture = copy(partly_built_trees_architecture[tree_part_i])
new_tree_part_architecture_indices = copy(partly_built_trees_architecture_indices[tree_part_i])
new_tree_part[answer_part_i] = separated_answers[answer_part_i][child_i][0]
new_tree_part_architecture[answer_part_i] = separated_answers_architecture[answer_part_i][child_i][0]
new_tree_part_architecture_indices[answer_part_i] = child_i
completed_tree_part = True
for val_i, val in enumerate(new_tree_part):
if not val:
completed_tree_part = False
if completed_tree_part:
built_trees.append(new_tree_part)
built_trees_architecture.append(new_tree_part_architecture)
built_trees_architecture_indices.append(new_tree_part_architecture_indices)
else:
new_partly_built_trees.append(new_tree_part)
new_partly_built_trees_architecture.append(new_tree_part_architecture)
new_partly_built_trees_architecture_indices.append(new_tree_part_architecture_indices)
partly_built_trees.extend(new_partly_built_trees)
partly_built_trees_architecture.extend(new_partly_built_trees_architecture)
partly_built_trees_architecture_indices.extend(new_partly_built_trees_architecture_indices)
l_ordered_built_trees_architecture, l_ordered_built_trees, r_ordered_built_trees_architecture, r_ordered_built_trees, unique_trees_architecture = [], [], [], [], []
if built_trees:
# sort 3 arrays by architecture indices
temp_trees_architecture_indice, temp_trees, temp_trees_architectures = (list(t) for t in zip(
*sorted(zip(built_trees_architecture_indices, built_trees, built_trees_architecture))))
# order outputs and erase duplicates
# for tree, tree_architecture, tree_architecture_indice in zip(built_trees, built_trees_architecture, built_trees_architecture_indices):
for tree, tree_architecture, tree_architecture_indice in zip(temp_trees, temp_trees_architectures, temp_trees_architecture_indice):
new_tree_architecture_indice, new_tree, new_tree_architecture = (list(t) for t in zip(*sorted(zip(tree_architecture_indice, tree, tree_architecture))))
# TODO check if inside new_tree_architecture in ordered_built_trees_architecture and if not append!
is_unique = True
for unique_tree in unique_trees_architecture:
already_in = True
for part_i in range(len(unique_tree)):
if unique_tree[part_i] != new_tree_architecture[part_i]:
already_in = False
break
if already_in:
is_unique = False
break
if is_unique:
unique_trees_architecture.append(new_tree_architecture)
if not node_order:
l_ordered_built_trees_architecture.append(new_tree_architecture)
l_ordered_built_trees.append(new_tree)
# TODO NODE ORDER = FALSE
# else:
#
# ordered_built_trees_architecture.append(tree_architecture)
# ordered_built_trees.append(tree)
# print("test")
# for answer1_i, answer1 in enumerate(separated_answers):
# for answer2_i, answer2 in enumerate(separated_answers):
# if answer1_i != answer2_i:
# res, res_i = self.merge_answer(answer1, answer2, answer1_i, answer2_i)
# print('aaa')
#
# pass
return l_ordered_built_trees, l_ordered_built_trees_architecture
def create_output_string_form(tree):
return tree.form.get_value()
def create_output_string_deprel(tree):
return tree.deprel.get_value()
def create_output_string_lemma(tree):
return tree.lemma.get_value()
def create_output_string_upos(tree):
return tree.upos.get_value()
def create_output_string_xpos(tree):
return tree.xpos.get_value()