213 lines
8.2 KiB
Python
213 lines
8.2 KiB
Python
import configparser
|
|
import csv
|
|
import hashlib
|
|
import os
|
|
import pickle
|
|
import re
|
|
|
|
import pyconll
|
|
|
|
from Tree import Tree, create_output_string_form, create_output_string_deprel, create_output_string_lemma, create_output_string_upos, create_output_string_xpos
|
|
|
|
|
|
def decode_query(orig_query):
|
|
new_query = False
|
|
|
|
# if command in bracelets remove them and treat command as new query
|
|
if orig_query[0] == '(' and orig_query[-1] == ')':
|
|
new_query = True
|
|
orig_query = orig_query[1:-1]
|
|
|
|
orig_query_split = orig_query.split(' ')[0].split('=')
|
|
# if orig_query is '_' return {}
|
|
if orig_query == '_':
|
|
return {}
|
|
# if no spaces in query then this is query node and do this otherwise further split query
|
|
elif len(orig_query.split(' ')) == 1:
|
|
if len(orig_query_split) > 1:
|
|
if orig_query_split[0] == 'L':
|
|
return {'lemma': orig_query_split[1]}
|
|
elif orig_query_split[0] == 'upos':
|
|
return {'upos': orig_query_split[1]}
|
|
elif orig_query_split[0] == 'xpos':
|
|
return {'xpos': orig_query_split[1]}
|
|
elif orig_query_split[0] == 'form':
|
|
return {'form': orig_query_split[1]}
|
|
elif not new_query:
|
|
raise Exception('Not supported yet!')
|
|
elif not new_query:
|
|
return {'form': orig_query}
|
|
|
|
# split over spaces if not inside braces
|
|
PATTERN = re.compile(r'''((?:[^ ()]|\([^(]*\))+)''')
|
|
all_orders = PATTERN.split(orig_query)[1::2]
|
|
|
|
|
|
# all_orders = orig_query.split()
|
|
node_actions = all_orders[::2]
|
|
priority_actions = all_orders[1::2]
|
|
priority_actions_beginnings = [a[0] for a in priority_actions]
|
|
|
|
# find root index
|
|
try:
|
|
root_index = priority_actions_beginnings.index('>')
|
|
except ValueError:
|
|
root_index = len(priority_actions)
|
|
|
|
l_children = []
|
|
r_children = []
|
|
root = None
|
|
for i, node_action in enumerate(node_actions):
|
|
if i < root_index:
|
|
l_children.append(decode_query(node_action))
|
|
elif i > root_index:
|
|
r_children.append(decode_query(node_action))
|
|
else:
|
|
root = decode_query(node_action)
|
|
if l_children:
|
|
root["l_children"] = l_children
|
|
if r_children:
|
|
root["r_children"] = r_children
|
|
return root
|
|
|
|
|
|
def create_trees(config):
|
|
internal_saves = config.get('settings', 'internal_saves')
|
|
input_path = config.get('settings', 'input')
|
|
hash_object = hashlib.sha1(input_path.encode('utf-8'))
|
|
hex_dig = hash_object.hexdigest()
|
|
trees_read_outputfile = os.path.join(internal_saves, hex_dig)
|
|
|
|
if not os.path.exists(trees_read_outputfile):
|
|
|
|
train = pyconll.load_from_file(input_path)
|
|
|
|
form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict = {}, {}, {}, {}, {}
|
|
|
|
all_trees = []
|
|
|
|
for sentence in train:
|
|
root = None
|
|
root_id = None
|
|
token_nodes = []
|
|
for token in sentence:
|
|
node = Tree(token.form, token.lemma, token.upos, token.xpos, token.deprel, form_dict,
|
|
lemma_dict, upos_dict, xpos_dict, deprel_dict, token.head)
|
|
token_nodes.append(node)
|
|
if token.deprel == 'root':
|
|
root = node
|
|
root_id = int(token.id)
|
|
|
|
for token_id, token in enumerate(token_nodes):
|
|
if int(token.parent) == 0:
|
|
token.set_parent(None)
|
|
else:
|
|
parent_id = int(token.parent) - 1
|
|
if token_id < parent_id:
|
|
token_nodes[parent_id].add_l_child(token)
|
|
elif token_id > parent_id:
|
|
token_nodes[parent_id].add_r_child(token)
|
|
else:
|
|
raise Exception('Root element should not be here!')
|
|
token.set_parent(token_nodes[parent_id])
|
|
|
|
if root == None:
|
|
raise Exception('No root element in sentence!')
|
|
all_trees.append(root)
|
|
|
|
|
|
with open(trees_read_outputfile, 'wb') as output:
|
|
pickle.dump((all_trees, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict), output)
|
|
else:
|
|
print('Reading trees:')
|
|
print('Completed')
|
|
with open(trees_read_outputfile, 'rb') as pkl_file:
|
|
(all_trees, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict) = pickle.load(pkl_file)
|
|
|
|
return all_trees, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict
|
|
|
|
def main():
|
|
config = configparser.ConfigParser()
|
|
config.read('config.ini')
|
|
|
|
# create queries
|
|
ngrams = 0
|
|
if config.getint('settings', 'ngrams') == 2:
|
|
ngrams = 2
|
|
query_tree = [{"l_children": [{}]}, {"r_children": [{}]}]
|
|
else:
|
|
query_tree = [decode_query('(' + config.get('settings', 'query') + ')')]
|
|
|
|
(all_trees, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict) = create_trees(config)
|
|
|
|
|
|
# set filters
|
|
assert config.get('settings', 'analyze_type') in ['deprel', 'lemma', 'upos', 'xpos', 'form'], '"analyze_type" is not set up correctly'
|
|
if config.get('settings', 'analyze_type') == 'deprel':
|
|
create_output_string_funct = create_output_string_deprel
|
|
elif config.get('settings', 'analyze_type') == 'lemma':
|
|
create_output_string_funct = create_output_string_lemma
|
|
elif config.get('settings', 'analyze_type') == 'upos':
|
|
create_output_string_funct = create_output_string_upos
|
|
elif config.get('settings', 'analyze_type') == 'xpos':
|
|
create_output_string_funct = create_output_string_xpos
|
|
else:
|
|
create_output_string_funct = create_output_string_form
|
|
|
|
result_dict = {}
|
|
|
|
# for tree in all_trees[2:]:
|
|
# for tree in all_trees[1205:]:
|
|
for tree in all_trees:
|
|
# original
|
|
# r_children = tree.r_children[:1] + tree.r_children[3:4]
|
|
# tree.r_children = tree.r_children[:1] + tree.r_children[2:4]
|
|
_, subtrees = tree.get_subtrees(query_tree, [], create_output_string_funct)
|
|
for query_results in subtrees:
|
|
for result in query_results:
|
|
if ngrams:
|
|
result = sorted(result)
|
|
r = tuple(result)
|
|
if r in result_dict:
|
|
result_dict[r] += 1
|
|
else:
|
|
result_dict[r] = 1
|
|
# test 1 layer queries
|
|
# tree.r_children = []
|
|
# tree.l_children[1].l_children = []
|
|
# _, subtrees = tree.get_subtrees([{'q1':'', "l_children": [{'a1':''}, {'a2':''}]}, {'q2':'', "l_children": [{'b1':''}]}, {'q3':'', "l_children": [{'c1':''}, {'c2':''}, {'c3':''}]}], [])
|
|
# # _, subtrees = tree.get_subtrees([{'q1':'', "l_children": [{'a1':''}, {'a2':''}], "r_children": []}, {'q2':'', "l_children": [{'b1':''}], "r_children": []}, {'q3':'', "l_children": [{'c1':''}, {'c2':''}, {'c3':''}], "r_children": []}], [])
|
|
|
|
# test 2 layer queries
|
|
# tree.r_children = [Tree('je', '', '', '', '', form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict, None)]
|
|
# tree.l_children[1].l_children = []
|
|
# new_tree = Tree('bil', '', '', '', '', form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict, None)
|
|
# new_tree.l_children = [tree]
|
|
# _, subtrees = new_tree.get_subtrees(
|
|
# [{"l_children":[{"l_children": [{'a1': ''}, {'a2': ''}, {'a3': ''}, {'a4': ''}]}]}], [])
|
|
# # _, subtrees = new_tree.get_subtrees(
|
|
# # [{"l_children":[{"l_children": [{'a1': ''}, {'a2': ''}, {'a3': ''}, {'a4': ''}], "r_children": []}], "r_children": []}], [])
|
|
|
|
sorted_list = sorted(result_dict.items(), key=lambda x: x[1], reverse=True)
|
|
|
|
with open(config.get('settings', 'output'), "w", newline="") as f:
|
|
# header - use every second space as a split
|
|
writer = csv.writer(f, delimiter='\t')
|
|
if ngrams:
|
|
writer.writerow(['Word 1', 'Word 2', 'Number of occurences'])
|
|
else:
|
|
span = 2
|
|
words = config.get('settings', 'query').split(" ")
|
|
header = [" ".join(words[i:i + span]) for i in range(0, len(words), span)] + ['Number of occurences']
|
|
writer.writerow(header)
|
|
|
|
# body
|
|
for k, v in sorted_list:
|
|
writer.writerow(list(k) + [str(v)])
|
|
|
|
return
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|