399 lines
19 KiB
Python
399 lines
19 KiB
Python
import sys
|
|
from copy import copy
|
|
|
|
from ResultNode import ResultNode
|
|
from ResultTree import ResultTree
|
|
from Value import Value
|
|
from generic import generate_key
|
|
|
|
|
|
class Tree(object):
|
|
def __init__(self, index, form, lemma, upos, xpos, deprel, feats, feats_detailed, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict, feats_dict, feats_detailed_dict, head):
|
|
if not hasattr(self, 'feats'):
|
|
self.feats_detailed = {}
|
|
|
|
if form not in form_dict:
|
|
form_dict[form] = Value(form)
|
|
self.form = form_dict[form]
|
|
if lemma not in lemma_dict:
|
|
lemma_dict[lemma] = Value(lemma)
|
|
self.lemma = lemma_dict[lemma]
|
|
if upos not in upos_dict:
|
|
upos_dict[upos] = Value(upos)
|
|
self.upos = upos_dict[upos]
|
|
if xpos not in xpos_dict:
|
|
xpos_dict[xpos] = Value(xpos)
|
|
self.xpos = xpos_dict[xpos]
|
|
if deprel not in deprel_dict:
|
|
deprel_dict[deprel] = Value(deprel)
|
|
self.deprel = deprel_dict[deprel]
|
|
if feats not in feats_dict:
|
|
feats_dict[feats] = Value(feats)
|
|
self.feats = feats_dict[feats]
|
|
for feat in feats_detailed.keys():
|
|
if feat not in feats_detailed_dict:
|
|
feats_detailed_dict[feat] = {}
|
|
if next(iter(feats_detailed[feat])) not in feats_detailed_dict[feat]:
|
|
feats_detailed_dict[feat][next(iter(feats_detailed[feat]))] = Value(next(iter(feats_detailed[feat])))
|
|
if not feat in self.feats_detailed:
|
|
self.feats_detailed[feat] = {}
|
|
self.feats_detailed[feat][next(iter(feats_detailed[feat]))] = feats_detailed_dict[feat][next(iter(feats_detailed[feat]))]
|
|
|
|
self.parent = head
|
|
self.children = []
|
|
self.children_split = -1
|
|
|
|
self.index = index
|
|
|
|
# for caching answers to questions
|
|
self.cache = {}
|
|
|
|
def add_child(self, child):
|
|
self.children.append(child)
|
|
|
|
def set_parent(self, parent):
|
|
self.parent = parent
|
|
|
|
def fits_static_requirements_feats(self, query_tree):
|
|
if 'feats_detailed' not in query_tree:
|
|
return True
|
|
|
|
for feat in query_tree['feats_detailed'].keys():
|
|
if feat not in self.feats_detailed or query_tree['feats_detailed'][feat] != next(iter(self.feats_detailed[feat].values())).get_value():
|
|
return False
|
|
|
|
return True
|
|
|
|
def fits_permanent_requirements(self, filters):
|
|
main_attributes = ['deprel', 'feats', 'form', 'lemma', 'upos']
|
|
|
|
if not filters['root_whitelist']:
|
|
return True
|
|
|
|
for option in filters['root_whitelist']:
|
|
filter_passed = True
|
|
|
|
# check if attributes are valid
|
|
for key in option.keys():
|
|
if key not in main_attributes:
|
|
if key not in self.feats_detailed or option[key] != list(self.feats_detailed[key].items())[0][1].get_value():
|
|
filter_passed = False
|
|
|
|
filter_passed = filter_passed and \
|
|
('deprel' not in option or option['deprel'] == self.deprel.get_value()) and \
|
|
('feats' not in option or option['feats'] == self.feats.get_value()) and \
|
|
('form' not in option or option['form'] == self.form.get_value()) and \
|
|
('lemma' not in option or option['lemma'] == self.lemma.get_value()) and \
|
|
('upos' not in option or option['upos'] == self.upos.get_value())
|
|
|
|
if filter_passed:
|
|
return True
|
|
|
|
return False
|
|
|
|
def fits_temporary_requirements(self, filters):
|
|
return not filters['label_whitelist'] or self.deprel.get_value() in filters['label_whitelist']
|
|
|
|
def fits_static_requirements(self, query_tree, filters):
|
|
return ('form' not in query_tree or query_tree['form'] == self.form.get_value()) and \
|
|
('lemma' not in query_tree or query_tree['lemma'] == self.lemma.get_value()) and \
|
|
('upos' not in query_tree or query_tree['upos'] == self.upos.get_value()) and \
|
|
('xpos' not in query_tree or query_tree['xpos'] == self.xpos.get_value()) and \
|
|
('deprel' not in query_tree or query_tree['deprel'] == self.deprel.get_value()) and \
|
|
('feats' not in query_tree or query_tree['feats'] == self.feats.get_value()) and \
|
|
(not filters['complete_tree_type'] or (len(self.children) == 0 and 'children' not in query_tree) or ('children' in query_tree and len(self.children) == len(query_tree['children']))) and \
|
|
self.fits_static_requirements_feats(query_tree)
|
|
|
|
def generate_children_queries(self, all_query_indices, children):
|
|
partial_results = {}
|
|
# list of pairs (index of query in group, group of query, is permanent)
|
|
child_queries_metadata = []
|
|
for child_index, child in enumerate(children):
|
|
new_queries = []
|
|
|
|
# add continuation queries to children
|
|
for result_part_index, result_index, is_permanent in child_queries_metadata:
|
|
if result_index in partial_results and result_part_index in partial_results[result_index] and len(partial_results[result_index][result_part_index]) > 0:
|
|
if len(all_query_indices[result_index][0]) > result_part_index + 1:
|
|
new_queries.append((result_part_index + 1, result_index, is_permanent))
|
|
|
|
child_queries_metadata = new_queries
|
|
|
|
# add new queries to children
|
|
for result_index, (group, is_permanent) in enumerate(all_query_indices):
|
|
# check if node has enough children for query to be possible
|
|
if len(children) - len(group) >= child_index:
|
|
child_queries_metadata.append((0, result_index, is_permanent))
|
|
|
|
child_queries = []
|
|
for result_part_index, result_index, _ in child_queries_metadata:
|
|
child_queries.append(all_query_indices[result_index][0][result_part_index])
|
|
|
|
partial_results = yield child, child_queries, child_queries_metadata
|
|
yield None, None, None
|
|
|
|
def add_subtrees(self, old_subtree, new_subtree):
|
|
old_subtree.extend(new_subtree)
|
|
|
|
def get_all_query_indices(self, temporary_query_nb, permanent_query_nb, permanent_query_trees, all_query_indices, children, create_output_string, filters):
|
|
partial_answers = [[] for i in range(permanent_query_nb + temporary_query_nb)]
|
|
complete_answers = [[] for i in range(permanent_query_nb)]
|
|
|
|
# list of pairs (index of query in group, group of query)
|
|
# TODO try to erase!!!
|
|
child_queries = [all_query_indice[0] for all_query_indice in all_query_indices]
|
|
|
|
answers_lengths = [len(query) for query in child_queries]
|
|
|
|
child_queries_flatten = [query_part for query in child_queries for query_part in query]
|
|
|
|
all_new_partial_answers = [[] for query_part in child_queries_flatten]
|
|
|
|
child_queries_flatten_dedup = []
|
|
child_queries_flatten_dedup_indices = []
|
|
for query_part in child_queries_flatten:
|
|
try:
|
|
index = child_queries_flatten_dedup.index(query_part)
|
|
except ValueError:
|
|
index = len(child_queries_flatten_dedup)
|
|
child_queries_flatten_dedup.append(query_part)
|
|
|
|
child_queries_flatten_dedup_indices.append(index)
|
|
|
|
# ask children all queries/partial queries
|
|
for child in children:
|
|
# obtain children results
|
|
new_partial_answers_dedup, new_complete_answers = child.get_subtrees(permanent_query_trees, child_queries_flatten_dedup,
|
|
create_output_string, filters)
|
|
|
|
assert len(new_partial_answers_dedup) == len(child_queries_flatten_dedup)
|
|
|
|
# duplicate results again on correct places
|
|
for i, flattened_index in enumerate(child_queries_flatten_dedup_indices):
|
|
all_new_partial_answers[i].append(new_partial_answers_dedup[flattened_index])
|
|
|
|
for i in range(len(new_complete_answers)):
|
|
# TODO add order rearagement (TO KEY)
|
|
complete_answers[i].extend(new_complete_answers[i])
|
|
|
|
# merge answers in appropriate way
|
|
i = 0
|
|
# iterate over all answers per queries
|
|
for answer_i, answer_length in enumerate(answers_lengths):
|
|
# iterate over answers of query
|
|
# TODO ERROR IN HERE!
|
|
partial_answers[answer_i] = self.create_answers(all_new_partial_answers[i:i + answer_length], answer_length, filters)
|
|
i += answer_length
|
|
|
|
return partial_answers, complete_answers
|
|
|
|
def order_dependent_queries(self, active_permanent_query_trees, active_temporary_query_trees, partial_subtrees,
|
|
create_output_string, merged_partial_subtrees, i_query, i_answer, filters):
|
|
node = ResultNode(self, self.index, create_output_string)
|
|
|
|
if i_query < len(active_permanent_query_trees):
|
|
if 'children' in active_permanent_query_trees[i_query]:
|
|
merged_partial_subtrees.append(
|
|
self.create_output_children(partial_subtrees[i_answer], [ResultTree(node, [], filters)], filters))
|
|
i_answer += 1
|
|
else:
|
|
merged_partial_subtrees.append([ResultTree(node, [], filters)])
|
|
else:
|
|
if 'children' in active_temporary_query_trees[i_query - len(active_permanent_query_trees)]:
|
|
merged_partial_subtrees.append(
|
|
self.create_output_children(partial_subtrees[i_answer], [ResultTree(node, [], filters)], filters))
|
|
i_answer += 1
|
|
else:
|
|
merged_partial_subtrees.append([ResultTree(node, [], filters)])
|
|
|
|
|
|
|
|
return i_answer
|
|
|
|
def get_unigrams(self, create_output_strings, filters):
|
|
unigrams = [generate_key(self, create_output_strings, print_lemma=False)[1]]
|
|
for child in self.children:
|
|
unigrams += child.get_unigrams(create_output_strings, filters)
|
|
return unigrams
|
|
|
|
def get_subtrees(self, permanent_query_trees, temporary_query_trees, create_output_string, filters):
|
|
"""
|
|
|
|
:param permanent_query_trees:
|
|
:param temporary_query_trees:
|
|
"""
|
|
|
|
# list of all children queries grouped by parent queries
|
|
all_query_indices = []
|
|
|
|
active_permanent_query_trees = []
|
|
for permanent_query_tree in permanent_query_trees:
|
|
if self.fits_static_requirements(permanent_query_tree, filters) and self.fits_permanent_requirements(filters):
|
|
active_permanent_query_trees.append(permanent_query_tree)
|
|
if 'children' in permanent_query_tree:
|
|
all_query_indices.append((permanent_query_tree['children'], True))
|
|
# r_all_query_indices.append((permanent_query_tree['r_children'], True))
|
|
|
|
active_temporary_query_trees = []
|
|
successful_temporary_queries = []
|
|
for i, temporary_query_tree in enumerate(temporary_query_trees):
|
|
if self.fits_static_requirements(temporary_query_tree, filters) and self.fits_temporary_requirements(filters):
|
|
active_temporary_query_trees.append(temporary_query_tree)
|
|
successful_temporary_queries.append(i)
|
|
if 'children' in temporary_query_tree:
|
|
all_query_indices.append((temporary_query_tree['children'], False))
|
|
|
|
partial_subtrees, complete_answers = self.get_all_query_indices(len(temporary_query_trees),
|
|
len(permanent_query_trees),
|
|
permanent_query_trees,
|
|
all_query_indices, self.children,
|
|
create_output_string, filters)
|
|
|
|
merged_partial_answers = []
|
|
i_question = 0
|
|
# i_child is necessary, because some queries may be answered at the beginning and were not passed to children.
|
|
# i_child is used to point where we are inside answers
|
|
i_answer = 0
|
|
# go over all permanent and temporary query trees
|
|
while i_question < len(active_permanent_query_trees) + len(active_temporary_query_trees):
|
|
# permanent query trees always have left and right child
|
|
i_answer = self.order_dependent_queries(active_permanent_query_trees, active_temporary_query_trees, partial_subtrees,
|
|
create_output_string, merged_partial_answers, i_question, i_answer, filters)
|
|
|
|
i_question += 1
|
|
|
|
for i in range(len(active_permanent_query_trees)):
|
|
# TODO FINALIZE RESULT
|
|
# erase first and last braclets when adding new query result
|
|
add_subtree = [subtree.finalize_result() for subtree in merged_partial_answers[i]]
|
|
complete_answers[i].extend(add_subtree)
|
|
|
|
# answers to valid queries
|
|
partial_answers = [[] for i in range(len(temporary_query_trees))]
|
|
for inside_i, outside_i in enumerate(successful_temporary_queries):
|
|
partial_answers[outside_i] = merged_partial_answers[
|
|
len(active_permanent_query_trees) + inside_i]
|
|
|
|
return partial_answers, complete_answers
|
|
|
|
@staticmethod
|
|
def create_children_groups(left_parts, right_parts):
|
|
if not left_parts:
|
|
return right_parts
|
|
|
|
if not right_parts:
|
|
return left_parts
|
|
|
|
all_children_group_possibilities = []
|
|
for left_part in left_parts:
|
|
for right_part in right_parts:
|
|
new_part = copy(left_part)
|
|
new_part.extend(right_part)
|
|
all_children_group_possibilities.append(new_part)
|
|
return all_children_group_possibilities
|
|
|
|
@staticmethod
|
|
def merge_answer(answer1, answer2, base_answer_i, answer_j):
|
|
merged_results = []
|
|
merged_indices = []
|
|
for answer1p_i, old_result in enumerate(answer1):
|
|
for answer2p_i, new_result in enumerate(answer2):
|
|
if answer1p_i != answer2p_i:
|
|
new_indices = [answer1p_i] + [answer2p_i]
|
|
# TODO add comparison answers with different indices if equal than ignore
|
|
merged_results.append(old_result + new_result)
|
|
merged_indices.append(new_indices)
|
|
return merged_results, merged_indices
|
|
|
|
def merge_results3(self, child, new_results, filters):
|
|
if filters['node_order']:
|
|
new_child = child
|
|
|
|
else:
|
|
new_child = sorted(child, key=lambda x: x[0].get_key())
|
|
|
|
children_groups = []
|
|
|
|
for i_answer, answer in enumerate(new_child):
|
|
children_groups = self.create_children_groups(children_groups, [[answer_part] for answer_part in answer])
|
|
|
|
results = []
|
|
for result in new_results:
|
|
for children in children_groups:
|
|
new_result = copy(result)
|
|
new_result.set_children(children)
|
|
results.append(new_result)
|
|
|
|
return results
|
|
|
|
def create_output_children(self, children, new_results, filters):
|
|
merged_results = []
|
|
for i_child, child in enumerate(children):
|
|
merged_results.extend(self.merge_results3(child, new_results, filters))
|
|
return merged_results
|
|
|
|
def create_answers(self, separated_answers, answer_length, filters):
|
|
partly_built_trees = [[None] * answer_length]
|
|
partly_built_trees_architecture_indices = [[None] * answer_length]
|
|
built_trees = []
|
|
built_trees_architecture_indices = []
|
|
|
|
# iterate over children first, so that new partly built trees are added only after all results of specific
|
|
# child are added
|
|
for child_i in range(len(separated_answers[0])):
|
|
new_partly_built_trees = []
|
|
new_partly_built_trees_architecture_indices = []
|
|
# iterate over answers parts
|
|
for answer_part_i in range(len(separated_answers)):
|
|
# necessary because some parts do not pass filters and are not added
|
|
if separated_answers[answer_part_i][child_i]:
|
|
for tree_part_i, tree_part in enumerate(partly_built_trees):
|
|
if not tree_part[answer_part_i]:
|
|
new_tree_part = copy(tree_part)
|
|
new_tree_part_architecture_indices = copy(partly_built_trees_architecture_indices[tree_part_i])
|
|
new_tree_part[answer_part_i] = separated_answers[answer_part_i][child_i]
|
|
new_tree_part_architecture_indices[answer_part_i] = child_i
|
|
completed_tree_part = True
|
|
for val_i, val in enumerate(new_tree_part):
|
|
if not val:
|
|
completed_tree_part = False
|
|
if completed_tree_part:
|
|
built_trees.append(new_tree_part)
|
|
built_trees_architecture_indices.append(new_tree_part_architecture_indices)
|
|
else:
|
|
new_partly_built_trees.append(new_tree_part)
|
|
new_partly_built_trees_architecture_indices.append(new_tree_part_architecture_indices)
|
|
else:
|
|
# pass over repetitions of same words
|
|
pass
|
|
|
|
partly_built_trees.extend(new_partly_built_trees)
|
|
partly_built_trees_architecture_indices.extend(new_partly_built_trees_architecture_indices)
|
|
|
|
l_ordered_built_trees, unique_trees_architecture = [], []
|
|
|
|
if built_trees:
|
|
# sort 3 arrays by architecture indices
|
|
temp_trees_index, temp_trees = (list(t) for t in zip(
|
|
*sorted(zip(built_trees_architecture_indices, built_trees))))
|
|
|
|
# order outputs and erase duplicates
|
|
for tree, tree_index in zip(temp_trees, temp_trees_index):
|
|
new_tree_index, new_tree = (list(t) for t in zip(*sorted(zip(tree_index, tree))))
|
|
# TODO check if inside new_tree_architecture in ordered_built_trees_architecture and if not append!
|
|
is_unique = True
|
|
for unique_tree in unique_trees_architecture:
|
|
already_in = True
|
|
for part_i in range(len(unique_tree)):
|
|
if len(unique_tree[part_i]) != len(new_tree[part_i]) or any(unique_tree[part_i][i_unique_part].get_order_key() != new_tree[part_i][i_unique_part].get_order_key() for i_unique_part in range(len(unique_tree[part_i]))):
|
|
already_in = False
|
|
break
|
|
if already_in:
|
|
is_unique = False
|
|
break
|
|
|
|
if is_unique:
|
|
unique_trees_architecture.append(new_tree)
|
|
l_ordered_built_trees.append(new_tree)
|
|
return l_ordered_built_trees
|