STARK/Tree.py
2019-11-29 11:43:21 +01:00

690 lines
36 KiB
Python

import sys
from copy import copy
from pyconll.unit import Token
from Result import Result
from Value import Value
class Tree(object):
def __init__(self, index, form, lemma, upos, xpos, deprel, feats, feats_detailed, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict, feats_dict, feats_detailed_dict, head):
if not hasattr(self, 'feats'):
self.feats_detailed = {}
# form_unicode = str(form).encode("utf-8")
if form not in form_dict:
form_dict[form] = Value(form)
self.form = form_dict[form]
if lemma not in lemma_dict:
lemma_dict[lemma] = Value(lemma)
self.lemma = lemma_dict[lemma]
if upos not in upos_dict:
upos_dict[upos] = Value(upos)
self.upos = upos_dict[upos]
if xpos not in xpos_dict:
xpos_dict[xpos] = Value(xpos)
self.xpos = xpos_dict[xpos]
if deprel not in deprel_dict:
deprel_dict[deprel] = Value(deprel)
self.deprel = deprel_dict[deprel]
if feats not in feats_dict:
feats_dict[feats] = Value(feats)
self.feats = feats_dict[feats]
for feat in feats_detailed.keys():
if next(iter(feats_detailed[feat])) not in feats_detailed_dict[feat]:
feats_detailed_dict[feat][next(iter(feats_detailed[feat]))] = Value(next(iter(feats_detailed[feat])))
if not feat in self.feats_detailed:
self.feats_detailed[feat] = {}
self.feats_detailed[feat][next(iter(feats_detailed[feat]))] = feats_detailed_dict[feat][next(iter(feats_detailed[feat]))]
# self.position = position
self.parent = head
self.children = []
self.children_split = -1
self.index = index
# for caching answers to questions
self.cache = {}
def add_child(self, child):
# child.index = len(self.children)
self.children.append(child)
def set_parent(self, parent):
self.parent = parent
# def fits_static_requirements_feats(self, query_tree):
# if 'feats' not in query_tree:
# return True
#
# for feat in query_tree['feats'].keys():
# if feat not in self.feats or query_tree['feats'][feat] != next(iter(self.feats[feat].values())).get_value():
# return False
#
# return True
def fits_permanent_requirements(self, filters):
main_attributes = ['deprel', 'feats', 'form', 'lemma', 'upos']
if not filters['root_whitelist']:
return True
for option in filters['root_whitelist']:
filter_passed = True
# check if attributes are valid
for key in option.keys():
if key not in main_attributes:
if key not in self.feats_detailed or option[key] != list(self.feats_detailed[key].items())[0][1].get_value():
filter_passed = False
filter_passed = filter_passed and \
('deprel' not in option or option['deprel'] == self.deprel.get_value()) and \
('feats' not in option or option['feats'] == self.feats.get_value()) and \
('form' not in option or option['form'] == self.form.get_value()) and \
('lemma' not in option or option['lemma'] == self.lemma.get_value()) and \
('upos' not in option or option['upos'] == self.upos.get_value())
if filter_passed:
return True
return False
def fits_temporary_requirements(self, filters):
return not filters['label_whitelist'] or self.deprel.get_value() in filters['label_whitelist']
def fits_static_requirements(self, query_tree, filters):
return ('form' not in query_tree or query_tree['form'] == self.form.get_value()) and \
('lemma' not in query_tree or query_tree['lemma'] == self.lemma.get_value()) and \
('upos' not in query_tree or query_tree['upos'] == self.upos.get_value()) and \
('xpos' not in query_tree or query_tree['xpos'] == self.xpos.get_value()) and \
('deprel' not in query_tree or query_tree['deprel'] == self.deprel.get_value()) and \
('feats' not in query_tree or query_tree['feats'] == self.feats.get_value()) and \
(not filters['complete_tree_type'] or (len(self.children) == 0 and 'children' not in query_tree) or ('children' in query_tree and len(self.children) == len(query_tree['children'])))
# self.fits_static_requirements_feats(query_tree)
def generate_children_queries(self, all_query_indices, children):
partial_results = {}
# list of pairs (index of query in group, group of query, is permanent)
child_queries_metadata = []
for child_index, child in enumerate(children):
new_queries = []
# add continuation queries to children
for result_part_index, result_index, is_permanent in child_queries_metadata:
if result_index in partial_results and result_part_index in partial_results[result_index] and len(partial_results[result_index][result_part_index]) > 0:
if len(all_query_indices[result_index][0]) > result_part_index + 1:
new_queries.append((result_part_index + 1, result_index, is_permanent))
# else:
# completed_subtrees.append((child, result_index))
child_queries_metadata = new_queries
# add new queries to children
for result_index, (group, is_permanent) in enumerate(all_query_indices):
# check if node has enough children for query to be possible
if len(children) - len(group) >= child_index:
child_queries_metadata.append((0, result_index, is_permanent))
child_queries = []
for result_part_index, result_index, _ in child_queries_metadata:
child_queries.append(all_query_indices[result_index][0][result_part_index])
partial_results = yield child, child_queries, child_queries_metadata
yield None, None, None
def add_subtrees(self, old_subtree, new_subtree):
old_subtree.extend(new_subtree)
def get_results(self, partial_results_dict, result_index, result_part, outcome, last_result_part):
# save results for later usage
# if result index already in and element 0 exists (otherwise error)
if result_index in partial_results_dict and 0 in partial_results_dict[result_index]:
if result_part - 1 in partial_results_dict[result_index]:
if result_part in partial_results_dict[result_index]:
partial_results_dict[result_index][result_part].extend(self.merge_results(partial_results_dict[result_index][result_part - 1], outcome))
else:
partial_results_dict[result_index][result_part] = self.merge_results(partial_results_dict[result_index][result_part - 1], outcome)
# extend one word layer with output
else:
partial_results_dict[result_index][0].extend(outcome)
else:
partial_results_dict[result_index] = {0: outcome}
if last_result_part - 1 in partial_results_dict[result_index]:
return partial_results_dict[result_index].pop(last_result_part - 1)
return []
def group_results(self, new_partial_subtrees, child_queries_metadata, all_query_indices, partial_results_dict, partial_subtrees):
for outcome, (result_part, result_index, is_permanent) in zip(new_partial_subtrees, child_queries_metadata):
if outcome:
new_results = self.get_results(partial_results_dict, result_index, result_part, outcome, len(all_query_indices[result_index][0]))
if new_results:
self.add_subtrees(partial_subtrees[result_index], new_results)
else:
if not is_permanent:
partial_subtrees[result_index].append([])
def get_all_query_indices_old(self, temporary_query_trees_size, completed_subtrees_size, permanent_query_trees, l_all_query_indices, children, create_output_string):
partial_subtrees = [[] for i in range(completed_subtrees_size + temporary_query_trees_size)]
completed_subtrees = [[] for i in range(completed_subtrees_size)]
# list of pairs (index of query in group, group of query)
partial_results_dict = {}
children_queries_generator = self.generate_children_queries(l_all_query_indices, children)
child_index = 0
child, child_queries, child_queries_metadata = next(children_queries_generator)
while child:
# obtain children results
new_partial_subtrees, new_completed_subtrees = child.get_subtrees(permanent_query_trees, child_queries, create_output_string)
self.group_results(new_partial_subtrees, child_queries_metadata, l_all_query_indices,
partial_results_dict, partial_subtrees)
for i in range(len(new_completed_subtrees)):
completed_subtrees[i].extend(new_completed_subtrees[i])
child, child_queries, child_queries_metadata = children_queries_generator.send(partial_results_dict)
child_index += 1
return partial_subtrees, completed_subtrees
def get_all_query_indices(self, temporary_query_nb, permanent_query_nb, permanent_query_trees, all_query_indices, children, create_output_string, filters):
# l_partial_subtrees, l_completed_subtrees = self.get_all_query_indices(len(temporary_query_trees),
# len(permanent_query_trees),
# permanent_query_trees,
# l_all_query_indices, self.l_children,
# create_output_string)
partial_answers = [[] for i in range(permanent_query_nb + temporary_query_nb)]
partial_answers_index = [[] for i in range(permanent_query_nb + temporary_query_nb)]
partial_answers_deprel = [[] for i in range(permanent_query_nb + temporary_query_nb)]
complete_answers = [[] for i in range(permanent_query_nb)]
# list of pairs (index of query in group, group of query)
partial_results_dict = {}
# TODO try to erase!!!
child_queries = [all_query_indice[0] for all_query_indice in all_query_indices]
answers_lengths = [len(query) for query in child_queries]
child_queries_flatten = [query_part for query in child_queries for query_part in query]
all_new_partial_answers = [[] for query_part in child_queries_flatten]
all_new_partial_answers_deprel = [[] for query_part in child_queries_flatten]
# if filters['caching']:
# erase duplicate queries
child_queries_flatten_dedup = []
child_queries_flatten_dedup_indices = []
for query_part in child_queries_flatten:
try:
index = child_queries_flatten_dedup.index(query_part)
except ValueError:
index = len(child_queries_flatten_dedup)
child_queries_flatten_dedup.append(query_part)
child_queries_flatten_dedup_indices.append(index)
# ask children all queries/partial queries
for child in children:
# obtain children results
# if filters['caching']:
new_partial_answers_dedup, new_complete_answers = child.get_subtrees(permanent_query_trees, child_queries_flatten_dedup,
create_output_string, filters)
assert len(new_partial_answers_dedup) == len(child_queries_flatten_dedup)
# duplicate results again on correct places
for i, flattened_index in enumerate(child_queries_flatten_dedup_indices):
all_new_partial_answers[i].append(new_partial_answers_dedup[flattened_index])
all_new_partial_answers_deprel[i].append(create_output_string_deprel(child))
# else:
# new_partial_answers_architecture, new_partial_answers, new_complete_answers = child.get_subtrees(
# permanent_query_trees, child_queries_flatten,
# create_output_string, filters)
#
# assert len(new_partial_answers) == len(child_queries_flatten)
#
# for i, new_partial_subtree in enumerate(new_partial_answers):
# all_new_partial_answers[i].append(new_partial_subtree)
# all_new_partial_answers_architecture[i].append(new_partial_answers_architecture[i])
# # if len(new_partial_answers_architecture[i]) > 1:
# # print('HERE!!!')
# all_new_partial_answers_deprel[i].append(create_output_string_deprel(child))
# add 6 queries from 3 split up
# self.group_results(new_partial_subtrees, child_queries_metadata, all_query_indices,
# partial_results_dict, partial_subtrees)
for i in range(len(new_complete_answers)):
# TODO add order rearagement (TO KEY)
complete_answers[i].extend(new_complete_answers[i])
# if create_output_string_form(self) == 'Dogodek':
# print('HERE!@@!')
# if create_output_string_form(self) == 'vpiti':
# print('HERE!@@!')
# merge answers in appropriate way
i = 0
# iterate over all answers per queries
for answer_i, answer_length in enumerate(answers_lengths):
# iterate over answers of query
# TODO ERROR IN HERE!
partial_answers[answer_i], partial_answers_index[answer_i], partial_answers_deprel[answer_i] = self.create_answers(all_new_partial_answers[i:i + answer_length], all_new_partial_answers_deprel[i:i + answer_length], answer_length, filters)
# while i < answers_length:
# self.create_grouped_answers()
# i += 1
i += answer_length
# merged_results = []
# for old_result in old_results:
# for new_result in new_results:
# merged_results.append(old_result + new_result)
# return merged_results
# children_queries_generator = self.generate_children_queries(all_query_indices, children)
#
# child_index = 0
# child, child_queries, child_queries_metadata = next(children_queries_generator)
# while child:
# # obtain children results
# new_partial_subtrees, new_completed_subtrees = child.get_subtrees(permanent_query_trees, child_queries, create_output_string)
#
# self.group_results(new_partial_subtrees, child_queries_metadata, all_query_indices,
# partial_results_dict, partial_subtrees)
#
# for i in range(len(new_completed_subtrees)):
# completed_subtrees[i].extend(new_completed_subtrees[i])
# child, child_queries, child_queries_metadata = children_queries_generator.send(partial_results_dict)
# child_index += 1
return partial_answers, partial_answers_index, partial_answers_deprel, complete_answers
def order_dependent_queries(self, active_permanent_query_trees, active_temporary_query_trees, partial_subtrees, partial_subtrees_index, partial_subtrees_deprel,
create_output_string, merged_partial_subtrees, i_query, i_answer, filters):
# string_output = ''
# if create_output_string_form(self) == 'vožnji':
# print('HERE!@@!')
if i_query < len(active_permanent_query_trees):
if 'children' in active_permanent_query_trees[i_query]:
# if not filters['node_order'] or i_child < self.children_split:
# merged_partial_subtrees.append(
# self.create_output_children(partial_subtrees[i_answer], [create_output_string(self)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer]))
# merged_partial_subtrees_architecture.append(
# self.create_output_children(partial_subtrees_architecture[i_answer], [str([self.index])], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer]))
merged_partial_subtrees.append(
self.create_output_children(partial_subtrees[i_answer], [Result(create_output_string(self), self.index)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer]))
i_answer += 1
else:
merged_partial_subtrees.append([Result(create_output_string(self), self.index)])
# merged_partial_subtrees.append([create_output_string(self)])
# merged_partial_subtrees_architecture.append([str([self.index])])
else:
if 'children' in active_temporary_query_trees[i_query - len(active_permanent_query_trees)]:
# if not filters['node_order'] or i_child < self.children_split:
# merged_partial_subtrees.append(
# self.create_output_children(partial_subtrees[i_answer], [create_output_string(self)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer]))
# merged_partial_subtrees_architecture.append(
# self.create_output_children(partial_subtrees_architecture[i_answer], [str([self.index])], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer]))
merged_partial_subtrees.append(
self.create_output_children(partial_subtrees[i_answer], [Result(create_output_string(self), self.index)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer]))
i_answer += 1
else:
merged_partial_subtrees.append([Result(create_output_string(self), self.index)])
# merged_partial_subtrees.append([create_output_string(self)])
# merged_partial_subtrees_architecture.append([str([self.index])])
return i_answer
def get_subtrees(self, permanent_query_trees, temporary_query_trees, create_output_string, filters):
"""
:param permanent_query_trees:
:param temporary_query_trees:
"""
# if create_output_string_form(self) == 'vožnji':
# print('HERE!@@!')
# list of all children queries grouped by parent queries
all_query_indices = []
active_permanent_query_trees = []
for permanent_query_tree in permanent_query_trees:
if self.fits_static_requirements(permanent_query_tree, filters) and self.fits_permanent_requirements(filters):
active_permanent_query_trees.append(permanent_query_tree)
if 'children' in permanent_query_tree:
all_query_indices.append((permanent_query_tree['children'], True))
# r_all_query_indices.append((permanent_query_tree['r_children'], True))
active_temporary_query_trees = []
successful_temporary_queries = []
for i, temporary_query_tree in enumerate(temporary_query_trees):
if self.fits_static_requirements(temporary_query_tree, filters) and self.fits_temporary_requirements(filters):
# if 'l_children' in temporary_query_tree and 'r_children' in temporary_query_tree:
active_temporary_query_trees.append(temporary_query_tree)
successful_temporary_queries.append(i)
if 'children' in temporary_query_tree:
all_query_indices.append((temporary_query_tree['children'], False))
partial_subtrees, partial_subtrees_index, partial_subtrees_deprel, complete_answers = self.get_all_query_indices(len(temporary_query_trees),
len(permanent_query_trees),
permanent_query_trees,
all_query_indices, self.children,
create_output_string, filters)
merged_partial_answers = []
# merged_partial_answers_architecture = []
i_question = 0
# i_child is necessary, because some queries may be answered at the beginning and were not passed to children.
# i_child is used to point where we are inside answers
i_answer = 0
# go over all permanent and temporary query trees
while i_question < len(active_permanent_query_trees) + len(active_temporary_query_trees):
# permanent query trees always have left and right child
i_answer = self.order_dependent_queries(active_permanent_query_trees, active_temporary_query_trees, partial_subtrees, partial_subtrees_index, partial_subtrees_deprel,
create_output_string, merged_partial_answers, i_question, i_answer, filters)
i_question += 1
for i in range(len(active_permanent_query_trees)):
# TODO FINALIZE RESULT
# erase first and last braclets when adding new query result
add_subtree = [subtree.finalize_result() for subtree in merged_partial_answers[i]]
# if 0 < len(active_permanent_query_trees):
complete_answers[i].extend(add_subtree)
# completed_subtrees[i].extend(merged_partial_subtrees[i])
# answers to valid queries
partial_answers = [[] for i in range(len(temporary_query_trees))]
for inside_i, outside_i in enumerate(successful_temporary_queries):
# partial_answers_architecture[outside_i] = merged_partial_answers_architecture[len(active_permanent_query_trees) + inside_i]
partial_answers[outside_i] = merged_partial_answers[
len(active_permanent_query_trees) + inside_i]
# return subtrees_architecture, subtrees, completed_subtrees
return partial_answers, complete_answers
# return merged_partial_subtrees_architecture[len(active_permanent_query_trees):], merged_partial_subtrees[len(active_permanent_query_trees):], completed_subtrees
@staticmethod
def merge_results(left_parts, right_parts, separator, left=True):
if not left_parts:
# return all right_parts
return [r_p.add_separator(separator, left) for r_p in right_parts]
# if left:
# return [r_p + separator for r_p in right_parts]
# # return [r_p.add_separator(separator, left) for r_p in right_parts]
# else:
# return [separator + r_p for r_p in right_parts]
if not right_parts:
return [l_p.add_separator(separator, False) for l_p in left_parts]
# return [separator + l_p for l_p in left_parts]
merged_results = []
for left_part in left_parts:
for right_part in right_parts:
merged_results.append(left_part.merge_results(right_part, separator))
# if separator:
# if left:
# merged_results.append(left_part + right_part + separator)
# else:
# merged_results.append(left_part + separator + right_part)
# else:
# merged_results.append(left_part + right_part)
return merged_results
@staticmethod
def merge_answer(answer1, answer2, base_answer_i, answer_j):
merged_results = []
merged_indices = []
for answer1p_i, old_result in enumerate(answer1):
for answer2p_i, new_result in enumerate(answer2):
if answer1p_i != answer2p_i:
new_indices = [answer1p_i] + [answer2p_i]
sorted_indices = sorted(new_indices)
if sorted_indices in merged_indices:
test = merged_indices.index(sorted(new_indices))
# TODO add comparison answers with different indices if equal than ignore
merged_results.append(old_result + new_result)
merged_indices.append(new_indices)
return merged_results, merged_indices
def create_output_children(self, children, new_results, filters, indices, deprel):
# if create_output_string_form(self) == 'prijel':
# print('HERE!@@!')
# if create_output_string_form(self) == 'utišal':
# print('HERE!@@!')
# if len(new_results) > 1:
# print('HERE')
merged_results = []
for i_child, child in enumerate(children):
l_res = []
r_res = []
if filters['node_order']:
new_child = child
else:
# a = [['tistega', 'dne'], ['sem', 'bil']]
# b = sorted(a)
# TODO CHECK IF THIS WORKS FOR CERTIAN
new_child = sorted(child, key=lambda x: x[0].key)
for i_answer, answer in enumerate(new_child):
# res += '(' + el + ') < '
if not filters['node_order'] or indices[i_child][i_answer] < self.children_split:
if filters['dependency_type']:
separator = ' <' + deprel[i_child][i_answer] + ' '
else:
separator = ' < '
l_res = self.merge_results(l_res, answer, separator, left=True)
# l_res += answer + separator
else:
if filters['dependency_type']:
separator = ' >' + deprel[i_child][i_answer] + ' '
else:
separator = ' > '
r_res = self.merge_results(r_res, answer, separator, left=False)
# r_res += separator + answer
if l_res:
l_res_combined = self.merge_results(l_res, new_results, None)
if r_res:
r_res_combined = self.merge_results(l_res_combined, r_res, None)
# merged_results.extend(['(' + el + ')' for el in r_res_combined])
merged_results.extend([el.put_in_bracelets() for el in r_res_combined])
else:
merged_results.extend([el.put_in_bracelets() for el in l_res_combined])
elif r_res:
r_res_combined = self.merge_results(new_results, r_res, None)
merged_results.extend(['(' + el + ')' for el in r_res_combined])
# merged_results.append('(' + l_res + new_result + r_res + ')')
return merged_results
@staticmethod
def create_output_left_children(left_children, new_results, filters):
merged_results = []
for child in left_children:
for new_result in new_results:
res = ''
if type(child) == str:
# res += '(' + child + ') < '
res += child + ' < '
else:
if filters['node_order']:
new_child = child
else:
new_child = sorted(child)
for el in new_child:
# res += '(' + el + ') < '
res += el + ' < '
merged_results.append('(' + res + new_result + ')')
return merged_results
@staticmethod
def create_output_right_children(new_results, right_children, filters):
merged_results = []
for child in right_children:
for new_result in new_results:
res = ''
if type(child) == str:
res += ' > ' + child
# res += ' > (' + child + ')'
else:
if filters['node_order']:
new_child = child
else:
new_child = sorted(child)
for el in new_child:
res += ' > ' + el
# res += ' > (' + el + ')'
merged_results.append('(' + new_result + res + ')')
# merged_results.append(new_result + ' > (' + child + ')')
return merged_results
# @staticmethod
def create_answers(self, separated_answers, separated_answers_deprel, answer_length, filters):
# TODO
# node_order = False
partly_built_trees = [[None] * answer_length]
# partly_built_trees_architecture = [[None] * answer_length]
partly_built_trees_architecture_indices = [[None] * answer_length]
partly_built_trees_deprel = [[None] * answer_length]
built_trees = []
# built_trees_architecture = []
built_trees_architecture_indices = []
built_trees_deprel = []
# if create_output_string_form(self) == 'Dogodek':
# print('HERE!@@!')
# iterate over children first, so that new partly built trees are added only after all results of specific
# child are added
for child_i in range(len(separated_answers[0])):
new_partly_built_trees = []
# new_partly_built_trees_architecture = []
new_partly_built_trees_architecture_indices = []
new_partly_built_trees_deprel = []
# iterate over answers parts
for answer_part_i in range(len(separated_answers)):
# necessary because some parts do not pass filters and are not added
# if child_i < len(separated_answers[answer_part_i]) and separated_answers[answer_part_i][child_i]:
if separated_answers[answer_part_i][child_i]:
for tree_part_i, tree_part in enumerate(partly_built_trees):
# if tree_part[answer_part_i] equals None add new element in its place
if not tree_part[answer_part_i]:
new_tree_part = copy(tree_part)
# new_tree_part_architecture = copy(partly_built_trees_architecture[tree_part_i])
new_tree_part_architecture_indices = copy(partly_built_trees_architecture_indices[tree_part_i])
new_tree_part_deprel = copy(partly_built_trees_deprel[tree_part_i])
new_tree_part[answer_part_i] = separated_answers[answer_part_i][child_i]
# new_tree_part_architecture[answer_part_i] = separated_answers_architecture[answer_part_i][child_i]
new_tree_part_architecture_indices[answer_part_i] = child_i
new_tree_part_deprel[answer_part_i] = separated_answers_deprel[answer_part_i][child_i]
completed_tree_part = True
for val_i, val in enumerate(new_tree_part):
if not val:
completed_tree_part = False
if completed_tree_part:
built_trees.append(new_tree_part)
# built_trees_architecture.append(new_tree_part_architecture)
built_trees_architecture_indices.append(new_tree_part_architecture_indices)
built_trees_deprel.append(new_tree_part_deprel)
else:
new_partly_built_trees.append(new_tree_part)
# new_partly_built_trees_architecture.append(new_tree_part_architecture)
new_partly_built_trees_architecture_indices.append(new_tree_part_architecture_indices)
new_partly_built_trees_deprel.append(new_tree_part_deprel)
else:
# pass over repetitions of same words
pass
# print('HERE!!!')
partly_built_trees.extend(new_partly_built_trees)
# partly_built_trees_architecture.extend(new_partly_built_trees_architecture)
partly_built_trees_architecture_indices.extend(new_partly_built_trees_architecture_indices)
partly_built_trees_deprel.extend(new_partly_built_trees_deprel)
l_ordered_built_trees, l_ordered_built_trees_index, l_ordered_built_trees_deprel, unique_trees_architecture = [], [], [], []
if built_trees:
# sort 3 arrays by architecture indices
# temp_trees_index, temp_trees, temp_trees_architectures, temp_trees_deprel = (list(t) for t in zip(
# *sorted(zip(built_trees_architecture_indices, built_trees, built_trees_architecture, built_trees_deprel))))
temp_trees_index, temp_trees, temp_trees_deprel = (list(t) for t in zip(
*sorted(zip(built_trees_architecture_indices, built_trees, built_trees_deprel))))
# order outputs and erase duplicates
# for tree, tree_architecture, tree_architecture_indice in zip(built_trees, built_trees_architecture, built_trees_architecture_indices):
# for tree, tree_architecture, tree_index, tree_deprel in zip(temp_trees, temp_trees_architectures, temp_trees_index, temp_trees_deprel):
for tree, tree_index, tree_deprel in zip(temp_trees, temp_trees_index, temp_trees_deprel):
# new_tree_index, new_tree, new_tree_architecture, new_tree_deprel = (list(t) for t in zip(*sorted(zip(tree_index, tree, tree_architecture, tree_deprel))))
new_tree_index, new_tree, new_tree_deprel = (list(t) for t in zip(*sorted(zip(tree_index, tree, tree_deprel))))
# TODO check if inside new_tree_architecture in ordered_built_trees_architecture and if not append!
is_unique = True
for unique_tree in unique_trees_architecture:
already_in = True
for part_i in range(len(unique_tree)):
test = unique_tree[part_i][0].order_key
if len(unique_tree[part_i]) != len(new_tree[part_i]) or any(unique_tree[part_i][i_unique_part].order_key != new_tree[part_i][i_unique_part].order_key for i_unique_part in range(len(unique_tree[part_i]))):
# if unique_tree[part_i].order_key != new_tree[part_i].order_key:
already_in = False
break
if already_in:
is_unique = False
break
if is_unique:
unique_trees_architecture.append(new_tree)
# if not filters['node_order']:
# l_ordered_built_trees_architecture.append(new_tree_architecture)
l_ordered_built_trees.append(new_tree)
l_ordered_built_trees_index.append(new_tree_index)
l_ordered_built_trees_deprel.append(new_tree_deprel)
# TODO NODE ORDER = FALSE
# else:
#
# ordered_built_trees_architecture.append(tree_architecture)
# ordered_built_trees.append(tree)
# print("test")
# for answer1_i, answer1 in enumerate(separated_answers):
# for answer2_i, answer2 in enumerate(separated_answers):
# if answer1_i != answer2_i:
# res, res_i = self.merge_answer(answer1, answer2, answer1_i, answer2_i)
# print('aaa')
#
# pass
return l_ordered_built_trees, l_ordered_built_trees_index, l_ordered_built_trees_deprel
def create_output_string_form(tree):
return tree.form.get_value()
def create_output_string_deprel(tree):
return tree.deprel.get_value()
def create_output_string_lemma(tree):
return tree.lemma.get_value()
def create_output_string_upos(tree):
return tree.upos.get_value()
def create_output_string_xpos(tree):
return tree.xpos.get_value()
def create_output_string_feats(tree):
return tree.feats.get_value()