cjvt-srl-tagging/tools/fillpred_model/step1.py
2019-02-27 17:32:19 +01:00

55 lines
3.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from pathlib import Path
import numpy as np
import pandas as pd
INFILE = "../../data/mate_train/sl.test.mate"
# INFILE = "../../data/mate_train/sl.all.mate"
OUTFILE = "data1.pickle"
def gen_msdlabels(df):
msd_set = set()
for i, r in df.iterrows():
msd_set.update(r[6].split("|"))
return sorted(list(msd_set))
def build_model_row(tsv_row):
# input: tsv_row in conll_2009 format
# preprocessed -- all possible msd values, alphabetically sorted
msdlabels = ['!', '"', '#', '%', "'", '(', ')', '+Animate', '+Clitic', '+Definiteness', '+Negative', ',', '-', '-Animate', '-Definiteness', '-Negative', '.', '/', ':', ';', '?', 'Abbreviation', 'Adjective', 'Adposition', 'Adverb', 'Conjunction', 'Interjection', 'Noun', 'Numeral', 'Particle', 'Pronoun', 'Residual', 'Verb', 'accusative', 'auxiliary', 'biaspectual', 'bound', 'cardinal', 'common', 'comparative', 'conditional', 'coordinating', 'dative', 'demonstrative', 'digit', 'dual', 'feminine', 'first', 'foreign', 'future', 'general', 'genitive', 'imperative', 'indefinite', 'infinitive', 'instrumental', 'interrogative', 'letter', 'locative', 'main', 'masculine', 'negative', 'neuter', 'nominative', 'ordinal', 'participle', 'perfective', 'personal', 'plural', 'positive', 'possessive', 'present', 'progressive', 'pronominal', 'proper', 'reflexive', 'relative', 'roman', 'second', 'singular', 'special', 'subordinating', 'superlative', 'supine', 'third', '«', '°', '»', '', '', '']
lemma = tsv_row[2]
msd = tsv_row[6]
fillpred = tsv_row[12] # Y
row = []
row.append(lemma == "biti")
row.extend([lb in msd.split("|") for lb in msdlabels])
row.append(fillpred == "Y")
return row
if __name__ == "__main__":
ssj_mate = Path(INFILE)
df = pd.read_csv(ssj_mate, sep='~', header=None)
df = df.iloc[:,0].str.split('\t', n=14, expand=True)
print(df.head())
# msdlabels = gen_msdlabels()
msdlabels = ['!', '"', '#', '%', "'", '(', ')', '+Animate', '+Clitic', '+Definiteness', '+Negative', ',', '-', '-Animate', '-Definiteness', '-Negative', '.', '/', ':', ';', '?', 'Abbreviation', 'Adjective', 'Adposition', 'Adverb', 'Conjunction', 'Interjection', 'Noun', 'Numeral', 'Particle', 'Pronoun', 'Residual', 'Verb', 'accusative', 'auxiliary', 'biaspectual', 'bound', 'cardinal', 'common', 'comparative', 'conditional', 'coordinating', 'dative', 'demonstrative', 'digit', 'dual', 'feminine', 'first', 'foreign', 'future', 'general', 'genitive', 'imperative', 'indefinite', 'infinitive', 'instrumental', 'interrogative', 'letter', 'locative', 'main', 'masculine', 'negative', 'neuter', 'nominative', 'ordinal', 'participle', 'perfective', 'personal', 'plural', 'positive', 'possessive', 'present', 'progressive', 'pronominal', 'proper', 'reflexive', 'relative', 'roman', 'second', 'singular', 'special', 'subordinating', 'superlative', 'supine', 'third', '«', '°', '»', '', '', '']
print("labels: \n", msdlabels)
labels = ["biti"] + msdlabels + ["fillpred"]
ndf = pd.DataFrame(columns=labels, dtype=bool)
for i, r in df.iterrows():
ndf.loc[i] = build_model_row(r)
if i % 1000 == 0:
print(i, df.shape)
print(ndf.head())
ndf.to_pickle(Path(OUTFILE))