150 lines
4.9 KiB
Python
150 lines
4.9 KiB
Python
from lxml import etree
|
|
import re
|
|
from parser.msdmap import Msdmap
|
|
|
|
W_TAGS = ['w']
|
|
C_TAGS = ['c']
|
|
S_TAGS = ['S', 'pc']
|
|
|
|
# reads a TEI xml file and returns a dictionary:
|
|
# { <sentence_id>: {
|
|
# sid: <sentence_id>, # serves as index in MongoDB
|
|
# text: ,
|
|
# tokens: ,
|
|
# }}
|
|
|
|
|
|
def parse_tei(filepath):
|
|
guess_corpus = None # SSJ | KRES
|
|
res_dict = {}
|
|
with open(filepath, "rb") as fp:
|
|
# remove namespaces
|
|
bstr = fp.read()
|
|
|
|
utf8str = bstr.decode("utf-8")
|
|
utf8str = re.sub('\\sxmlns="[^"]+"', '', utf8str, count=1)
|
|
utf8str = re.sub(' xml:', ' ', utf8str)
|
|
|
|
root = etree.XML(utf8str.encode("utf-8"))
|
|
|
|
divs = [] # in ssj, there are divs, in Kres, there are separate files
|
|
if "id" in root.keys():
|
|
# Kres files start with <TEI id=...>
|
|
guess_corpus = "KRES"
|
|
divs = [root]
|
|
else:
|
|
guess_corpus = "SSJ"
|
|
divs = root.findall(".//div")
|
|
|
|
# parse divs
|
|
for div in divs:
|
|
f_id = div.get("id")
|
|
|
|
# parse paragraphs
|
|
for p in div.findall(".//p"):
|
|
p_id = p.get("id").split(".")[-1]
|
|
|
|
# parse sentences
|
|
for s in p.findall(".//s"):
|
|
s_id = s.get("id").split(".")[-1]
|
|
sentence_text = ""
|
|
sentence_tokens = []
|
|
|
|
# parse tokens
|
|
for el in s.iter():
|
|
if el.tag in W_TAGS:
|
|
el_id = el.get("id").split(".")[-1]
|
|
if el_id[0] == 't':
|
|
el_id = el_id[1:] # ssj W_TAG ids start with t
|
|
sentence_text += el.text
|
|
sentence_tokens += [(
|
|
"w",
|
|
int(el_id),
|
|
el.text,
|
|
el.get("lemma"),
|
|
(el.get("msd") if guess_corpus == "KRES"
|
|
else el.get("ana").split(":")[-1]),
|
|
)]
|
|
elif el.tag in C_TAGS:
|
|
# only Kres' C_TAGS have ids
|
|
el_id = el.get("id") or "none"
|
|
el_id = el_id.split(".")[-1]
|
|
sentence_text += el.text
|
|
sentence_tokens += [("c", el_id, el.text,)]
|
|
elif el.tag in S_TAGS:
|
|
# Kres' <S /> doesn't contain .text
|
|
sentence_text += " "
|
|
else:
|
|
# pass links and linkGroups
|
|
pass
|
|
sentence_id = "{}.{}.{}".format(f_id, p_id, s_id)
|
|
if sentence_id in res_dict:
|
|
raise KeyError("duplicated id: {}".format(sentence_id))
|
|
res_dict[sentence_id] = {
|
|
"sid": sentence_id,
|
|
"text": sentence_text,
|
|
"tokens": sentence_tokens,
|
|
"links": (
|
|
parse_links(s) if guess_corpus == "KRES" else None
|
|
)
|
|
}
|
|
return res_dict
|
|
|
|
|
|
def parse_links(s_el):
|
|
lgrps = s_el.findall(".//links")
|
|
if len(lgrps) < 1:
|
|
raise IOError("Can't find links.")
|
|
res_links = {}
|
|
for link in lgrps[0]:
|
|
dep = int(link.get("dep").split(".")[-1])
|
|
res_links[dep] = (
|
|
link.get("afun"),
|
|
dep,
|
|
int(link.get("from").split(".")[-1]),
|
|
)
|
|
return res_links
|
|
|
|
|
|
def to_conll09(sentence_entry):
|
|
|
|
def fillpred(pos, feat):
|
|
if False:
|
|
# todo
|
|
return "Y"
|
|
return "_"
|
|
|
|
msdm = Msdmap()
|
|
# works with kres, with parsed links
|
|
out_str = ""
|
|
for token in sentence_entry["tokens"]:
|
|
if token[0] != "w":
|
|
continue
|
|
msd = msdm.msd_from_slo(token[4])
|
|
fprd = fillpred("todo", "todo")
|
|
print(msd)
|
|
print(token)
|
|
print(sentence_entry["links"])
|
|
t_id = token[1]
|
|
print(t_id)
|
|
# 1 3 4 5 6 7 8 9 10 11 12 13 14
|
|
out_str += "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(
|
|
t_id, # id
|
|
token[2], # form
|
|
token[3], # lemma
|
|
token[3], # plemma
|
|
"todo", # pos (TODO)
|
|
"todo", # ppos (TODO)
|
|
"todo", # feat (TODO)
|
|
"todo", # pfeat (TODO)
|
|
sentence_entry["links"][t_id][2], # head
|
|
sentence_entry["links"][t_id][2], # phead
|
|
sentence_entry["links"][t_id][1], # deprel
|
|
sentence_entry["links"][t_id][1], # pdeprel
|
|
fprd, # fillpred
|
|
(token[3] if fprd == "Y" else "_"), # pred
|
|
"todo" # apredn...
|
|
)
|
|
out_str += "\n"
|
|
return out_str
|