cjvt-srl-tagging/tools/parser/parser.py

87 lines
2.2 KiB
Python
Raw Normal View History

2019-02-03 21:54:26 +00:00
from lxml import etree
import re
W_TAGS = ['w']
C_TAGS = ['c']
S_TAGS = ['S', 'pc']
# reads a TEI xml file and returns a dictionary:
# { <sentence_id>: {
# sid: <sentence_id>, # serves as index in MongoDB
# text: ,
# tokens: ,
# }}
def parse_tei(filepath):
guess_corpus = None # SSJ | KRES
res_dict = {}
with open(filepath, "r") as fp:
# remove namespaces
xmlstr = fp.read()
xmlstr = re.sub('\\sxmlns="[^"]+"', '', xmlstr, count=1)
xmlstr = re.sub(' xml:', ' ', xmlstr)
root = etree.XML(xmlstr.encode("utf-8"))
divs = [] # in ssj, there are divs, in Kres, there are separate files
if "id" in root.keys():
# Kres files start with <TEI id=...>
guess_corpus = "KRES"
divs = [root]
else:
guess_corpus = "SSJ"
divs = root.findall(".//div")
# parse divs
for div in divs:
f_id = div.get("id")
# parse paragraphs
for p in div.findall(".//p"):
p_id = p.get("id").split(".")[-1]
# parse sentences
for s in p.findall(".//s"):
s_id = s.get("id").split(".")[-1]
sentence_text = ""
sentence_tokens = []
# parse tokens
for el in s.iter():
if el.tag in W_TAGS:
el_id = el.get("id").split(".")[-1]
if el_id[0] == 't':
el_id = el_id[1:] # ssj W_TAG ids start with t
sentence_text += el.text
sentence_tokens += [(
"w",
el_id,
el.text,
el.get("lemma"),
(el.get("msd") if guess_corpus == "KRES" else el.get("ana").split(":")[-1]),
)]
elif el.tag in C_TAGS:
el_id = el.get("id") or "none" # only Kres' C_TAGS have ids
el_id = el_id.split(".")[-1]
sentence_text += el.text
sentence_tokens += [("c", el_id, el.text,)]
elif el.tag in S_TAGS:
sentence_text += " " # Kres' <S /> doesn't contain .text
else:
# pass links and linkGroups
# print(el.tag)
pass
sentence_id = "{}.{}.{}".format(f_id, p_id, s_id)
"""
print(sentence_id)
print(sentence_text)
print(sentence_tokens)
"""
if sentence_id in res_dict:
raise KeyError("duplicated id: {}".format(sentence_id))
res_dict[sentence_id] = {
"sid": sentence_id,
"text": sentence_text,
"tokens": sentence_tokens
}
return res_dict