# All required components, to create and fill a database, # instantiate backend and frontend. MAKE_ROOT = $(shell pwd) ### Input data # I received ssj500k in one .xml file, # kres is composed of many .xml files # I generated srl tags for kres in separate .json files # (for each kres.xml file there is a kres.json file with srl tags) SSJ_FILE = "$(MAKE_ROOT)/data/samples/ssj_example/ssj500k-sl.body.sample.xml" KRES_FOLDER = "$(MAKE_ROOT)/data/samples/kres_example" KRES_SRL_FOLDER = "$(MAKE_ROOT)/data/kres_srl" OUTPUT = "db" OUTDIR = "/home/voje/workdir/test_out" DBADDR = "0.0.0.0:27017" # don't use localhost DB_ADM_USER = testadmin DB_ADM_PASS = testadminpass DB_USR_USER = testuser DB_USR_PASS = testuserpass export .PHONY: python-env fill_database all: echo "Select an argument" # create database (run from host): # !!! might need to run several times, so the containers come online # Successful if you see the lines: # Successfully added user: { "user" : "testuser", "roles" : [ "readWrite" ] } # bye database-service: cd dockerfiles/database; $(MAKE) build_run database-users: cd dockerfiles/database; $(MAKE) create_users # also useful, if we want to restart the db database-clean: cd dockerfiles/database; $(MAKE) clean_stack # create python-env container python-env: cd dockerfiles/python-env; $(MAKE) # inside the container, install our packages python-env-install: pip3 install -e src/pkg/cjvt-corpusparser/. # from inside python-env container: data/samples: cd data; tar xzvf samples.tar.gz # from inside python-env container: fill_database: data/samples python3 src/pkg/cjvt-corpusparser/corpusparser/main.py --kres-folder $(KRES_FOLDER) \ --ssj-file $(SSJ_FILE) --kres-srl-folder $(KRES_SRL_FOLDER) \ --output $(OUTPUT) --outdir $(OUTDIR) --dbaddr $(DBADDR) \ --dbuser $(DB_USR_USER) --dbpass $(DB_USR_PASS)