import sys from copy import copy from pyconll.unit import Token from Result import Result from Value import Value class Tree(object): def __init__(self, index, form, lemma, upos, xpos, deprel, feats, feats_detailed, form_dict, lemma_dict, upos_dict, xpos_dict, deprel_dict, feats_dict, feats_detailed_dict, head): if not hasattr(self, 'feats'): self.feats_detailed = {} # form_unicode = str(form).encode("utf-8") if form not in form_dict: form_dict[form] = Value(form) self.form = form_dict[form] if lemma not in lemma_dict: lemma_dict[lemma] = Value(lemma) self.lemma = lemma_dict[lemma] if upos not in upos_dict: upos_dict[upos] = Value(upos) self.upos = upos_dict[upos] if xpos not in xpos_dict: xpos_dict[xpos] = Value(xpos) self.xpos = xpos_dict[xpos] if deprel not in deprel_dict: deprel_dict[deprel] = Value(deprel) self.deprel = deprel_dict[deprel] if feats not in feats_dict: feats_dict[feats] = Value(feats) self.feats = feats_dict[feats] for feat in feats_detailed.keys(): if feat not in feats_detailed_dict: feats_detailed_dict[feat] = {} if next(iter(feats_detailed[feat])) not in feats_detailed_dict[feat]: feats_detailed_dict[feat][next(iter(feats_detailed[feat]))] = Value(next(iter(feats_detailed[feat]))) if not feat in self.feats_detailed: self.feats_detailed[feat] = {} self.feats_detailed[feat][next(iter(feats_detailed[feat]))] = feats_detailed_dict[feat][next(iter(feats_detailed[feat]))] # self.position = position self.parent = head self.children = [] self.children_split = -1 self.index = index # for caching answers to questions self.cache = {} def add_child(self, child): # child.index = len(self.children) self.children.append(child) def set_parent(self, parent): self.parent = parent # def fits_static_requirements_feats(self, query_tree): # if 'feats' not in query_tree: # return True # # for feat in query_tree['feats'].keys(): # if feat not in self.feats or query_tree['feats'][feat] != next(iter(self.feats[feat].values())).get_value(): # return False # # return True def fits_permanent_requirements(self, filters): main_attributes = ['deprel', 'feats', 'form', 'lemma', 'upos'] if not filters['root_whitelist']: return True for option in filters['root_whitelist']: filter_passed = True # check if attributes are valid for key in option.keys(): if key not in main_attributes: if key not in self.feats_detailed or option[key] != list(self.feats_detailed[key].items())[0][1].get_value(): filter_passed = False filter_passed = filter_passed and \ ('deprel' not in option or option['deprel'] == self.deprel.get_value()) and \ ('feats' not in option or option['feats'] == self.feats.get_value()) and \ ('form' not in option or option['form'] == self.form.get_value()) and \ ('lemma' not in option or option['lemma'] == self.lemma.get_value()) and \ ('upos' not in option or option['upos'] == self.upos.get_value()) if filter_passed: return True return False def fits_temporary_requirements(self, filters): return not filters['label_whitelist'] or self.deprel.get_value() in filters['label_whitelist'] def fits_static_requirements(self, query_tree, filters): return ('form' not in query_tree or query_tree['form'] == self.form.get_value()) and \ ('lemma' not in query_tree or query_tree['lemma'] == self.lemma.get_value()) and \ ('upos' not in query_tree or query_tree['upos'] == self.upos.get_value()) and \ ('xpos' not in query_tree or query_tree['xpos'] == self.xpos.get_value()) and \ ('deprel' not in query_tree or query_tree['deprel'] == self.deprel.get_value()) and \ ('feats' not in query_tree or query_tree['feats'] == self.feats.get_value()) and \ (not filters['complete_tree_type'] or (len(self.children) == 0 and 'children' not in query_tree) or ('children' in query_tree and len(self.children) == len(query_tree['children']))) # self.fits_static_requirements_feats(query_tree) def generate_children_queries(self, all_query_indices, children): partial_results = {} # list of pairs (index of query in group, group of query, is permanent) child_queries_metadata = [] for child_index, child in enumerate(children): new_queries = [] # add continuation queries to children for result_part_index, result_index, is_permanent in child_queries_metadata: if result_index in partial_results and result_part_index in partial_results[result_index] and len(partial_results[result_index][result_part_index]) > 0: if len(all_query_indices[result_index][0]) > result_part_index + 1: new_queries.append((result_part_index + 1, result_index, is_permanent)) # else: # completed_subtrees.append((child, result_index)) child_queries_metadata = new_queries # add new queries to children for result_index, (group, is_permanent) in enumerate(all_query_indices): # check if node has enough children for query to be possible if len(children) - len(group) >= child_index: child_queries_metadata.append((0, result_index, is_permanent)) child_queries = [] for result_part_index, result_index, _ in child_queries_metadata: child_queries.append(all_query_indices[result_index][0][result_part_index]) partial_results = yield child, child_queries, child_queries_metadata yield None, None, None def add_subtrees(self, old_subtree, new_subtree): old_subtree.extend(new_subtree) def get_results(self, partial_results_dict, result_index, result_part, outcome, last_result_part): # save results for later usage # if result index already in and element 0 exists (otherwise error) if result_index in partial_results_dict and 0 in partial_results_dict[result_index]: if result_part - 1 in partial_results_dict[result_index]: if result_part in partial_results_dict[result_index]: partial_results_dict[result_index][result_part].extend(self.merge_results(partial_results_dict[result_index][result_part - 1], outcome)) else: partial_results_dict[result_index][result_part] = self.merge_results(partial_results_dict[result_index][result_part - 1], outcome) # extend one word layer with output else: partial_results_dict[result_index][0].extend(outcome) else: partial_results_dict[result_index] = {0: outcome} if last_result_part - 1 in partial_results_dict[result_index]: return partial_results_dict[result_index].pop(last_result_part - 1) return [] def group_results(self, new_partial_subtrees, child_queries_metadata, all_query_indices, partial_results_dict, partial_subtrees): for outcome, (result_part, result_index, is_permanent) in zip(new_partial_subtrees, child_queries_metadata): if outcome: new_results = self.get_results(partial_results_dict, result_index, result_part, outcome, len(all_query_indices[result_index][0])) if new_results: self.add_subtrees(partial_subtrees[result_index], new_results) else: if not is_permanent: partial_subtrees[result_index].append([]) def get_all_query_indices_old(self, temporary_query_trees_size, completed_subtrees_size, permanent_query_trees, l_all_query_indices, children, create_output_string): partial_subtrees = [[] for i in range(completed_subtrees_size + temporary_query_trees_size)] completed_subtrees = [[] for i in range(completed_subtrees_size)] # list of pairs (index of query in group, group of query) partial_results_dict = {} children_queries_generator = self.generate_children_queries(l_all_query_indices, children) child_index = 0 child, child_queries, child_queries_metadata = next(children_queries_generator) while child: # obtain children results new_partial_subtrees, new_completed_subtrees = child.get_subtrees(permanent_query_trees, child_queries, create_output_string) self.group_results(new_partial_subtrees, child_queries_metadata, l_all_query_indices, partial_results_dict, partial_subtrees) for i in range(len(new_completed_subtrees)): completed_subtrees[i].extend(new_completed_subtrees[i]) child, child_queries, child_queries_metadata = children_queries_generator.send(partial_results_dict) child_index += 1 return partial_subtrees, completed_subtrees def get_all_query_indices(self, temporary_query_nb, permanent_query_nb, permanent_query_trees, all_query_indices, children, create_output_string, filters): # l_partial_subtrees, l_completed_subtrees = self.get_all_query_indices(len(temporary_query_trees), # len(permanent_query_trees), # permanent_query_trees, # l_all_query_indices, self.l_children, # create_output_string) partial_answers = [[] for i in range(permanent_query_nb + temporary_query_nb)] partial_answers_index = [[] for i in range(permanent_query_nb + temporary_query_nb)] partial_answers_deprel = [[] for i in range(permanent_query_nb + temporary_query_nb)] complete_answers = [[] for i in range(permanent_query_nb)] # list of pairs (index of query in group, group of query) partial_results_dict = {} # TODO try to erase!!! child_queries = [all_query_indice[0] for all_query_indice in all_query_indices] answers_lengths = [len(query) for query in child_queries] child_queries_flatten = [query_part for query in child_queries for query_part in query] all_new_partial_answers = [[] for query_part in child_queries_flatten] all_new_partial_answers_deprel = [[] for query_part in child_queries_flatten] # if filters['caching']: # erase duplicate queries child_queries_flatten_dedup = [] child_queries_flatten_dedup_indices = [] for query_part in child_queries_flatten: try: index = child_queries_flatten_dedup.index(query_part) except ValueError: index = len(child_queries_flatten_dedup) child_queries_flatten_dedup.append(query_part) child_queries_flatten_dedup_indices.append(index) # ask children all queries/partial queries for child in children: # obtain children results # if filters['caching']: new_partial_answers_dedup, new_complete_answers = child.get_subtrees(permanent_query_trees, child_queries_flatten_dedup, create_output_string, filters) assert len(new_partial_answers_dedup) == len(child_queries_flatten_dedup) # duplicate results again on correct places for i, flattened_index in enumerate(child_queries_flatten_dedup_indices): all_new_partial_answers[i].append(new_partial_answers_dedup[flattened_index]) all_new_partial_answers_deprel[i].append(create_output_string_deprel(child)) # else: # new_partial_answers_architecture, new_partial_answers, new_complete_answers = child.get_subtrees( # permanent_query_trees, child_queries_flatten, # create_output_string, filters) # # assert len(new_partial_answers) == len(child_queries_flatten) # # for i, new_partial_subtree in enumerate(new_partial_answers): # all_new_partial_answers[i].append(new_partial_subtree) # all_new_partial_answers_architecture[i].append(new_partial_answers_architecture[i]) # # if len(new_partial_answers_architecture[i]) > 1: # # print('HERE!!!') # all_new_partial_answers_deprel[i].append(create_output_string_deprel(child)) # add 6 queries from 3 split up # self.group_results(new_partial_subtrees, child_queries_metadata, all_query_indices, # partial_results_dict, partial_subtrees) for i in range(len(new_complete_answers)): # TODO add order rearagement (TO KEY) complete_answers[i].extend(new_complete_answers[i]) # if create_output_string_form(self) == 'Dogodek': # print('HERE!@@!') # if create_output_string_form(self) == 'vpiti': # print('HERE!@@!') # merge answers in appropriate way i = 0 # iterate over all answers per queries for answer_i, answer_length in enumerate(answers_lengths): # iterate over answers of query # TODO ERROR IN HERE! partial_answers[answer_i], partial_answers_index[answer_i], partial_answers_deprel[answer_i] = self.create_answers(all_new_partial_answers[i:i + answer_length], all_new_partial_answers_deprel[i:i + answer_length], answer_length, filters) # while i < answers_length: # self.create_grouped_answers() # i += 1 i += answer_length # merged_results = [] # for old_result in old_results: # for new_result in new_results: # merged_results.append(old_result + new_result) # return merged_results # children_queries_generator = self.generate_children_queries(all_query_indices, children) # # child_index = 0 # child, child_queries, child_queries_metadata = next(children_queries_generator) # while child: # # obtain children results # new_partial_subtrees, new_completed_subtrees = child.get_subtrees(permanent_query_trees, child_queries, create_output_string) # # self.group_results(new_partial_subtrees, child_queries_metadata, all_query_indices, # partial_results_dict, partial_subtrees) # # for i in range(len(new_completed_subtrees)): # completed_subtrees[i].extend(new_completed_subtrees[i]) # child, child_queries, child_queries_metadata = children_queries_generator.send(partial_results_dict) # child_index += 1 return partial_answers, partial_answers_index, partial_answers_deprel, complete_answers def order_dependent_queries(self, active_permanent_query_trees, active_temporary_query_trees, partial_subtrees, partial_subtrees_index, partial_subtrees_deprel, create_output_string, merged_partial_subtrees, i_query, i_answer, filters): # string_output = '' # if create_output_string_form(self) == 'vožnji': # print('HERE!@@!') if i_query < len(active_permanent_query_trees): if 'children' in active_permanent_query_trees[i_query]: # if not filters['node_order'] or i_child < self.children_split: # merged_partial_subtrees.append( # self.create_output_children(partial_subtrees[i_answer], [create_output_string(self)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer])) # merged_partial_subtrees_architecture.append( # self.create_output_children(partial_subtrees_architecture[i_answer], [str([self.index])], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer])) merged_partial_subtrees.append( self.create_output_children(partial_subtrees[i_answer], [Result(create_output_string(self), self.index)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer])) i_answer += 1 else: merged_partial_subtrees.append([Result(create_output_string(self), self.index)]) # merged_partial_subtrees.append([create_output_string(self)]) # merged_partial_subtrees_architecture.append([str([self.index])]) else: if 'children' in active_temporary_query_trees[i_query - len(active_permanent_query_trees)]: # if not filters['node_order'] or i_child < self.children_split: # merged_partial_subtrees.append( # self.create_output_children(partial_subtrees[i_answer], [create_output_string(self)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer])) # merged_partial_subtrees_architecture.append( # self.create_output_children(partial_subtrees_architecture[i_answer], [str([self.index])], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer])) merged_partial_subtrees.append( self.create_output_children(partial_subtrees[i_answer], [Result(create_output_string(self), self.index)], filters, partial_subtrees_index[i_answer], partial_subtrees_deprel[i_answer])) i_answer += 1 else: merged_partial_subtrees.append([Result(create_output_string(self), self.index)]) # merged_partial_subtrees.append([create_output_string(self)]) # merged_partial_subtrees_architecture.append([str([self.index])]) return i_answer def get_subtrees(self, permanent_query_trees, temporary_query_trees, create_output_string, filters): """ :param permanent_query_trees: :param temporary_query_trees: """ # if create_output_string_form(self) == 'vožnji': # print('HERE!@@!') # list of all children queries grouped by parent queries all_query_indices = [] active_permanent_query_trees = [] for permanent_query_tree in permanent_query_trees: if self.fits_static_requirements(permanent_query_tree, filters) and self.fits_permanent_requirements(filters): active_permanent_query_trees.append(permanent_query_tree) if 'children' in permanent_query_tree: all_query_indices.append((permanent_query_tree['children'], True)) # r_all_query_indices.append((permanent_query_tree['r_children'], True)) active_temporary_query_trees = [] successful_temporary_queries = [] for i, temporary_query_tree in enumerate(temporary_query_trees): if self.fits_static_requirements(temporary_query_tree, filters) and self.fits_temporary_requirements(filters): # if 'l_children' in temporary_query_tree and 'r_children' in temporary_query_tree: active_temporary_query_trees.append(temporary_query_tree) successful_temporary_queries.append(i) if 'children' in temporary_query_tree: all_query_indices.append((temporary_query_tree['children'], False)) partial_subtrees, partial_subtrees_index, partial_subtrees_deprel, complete_answers = self.get_all_query_indices(len(temporary_query_trees), len(permanent_query_trees), permanent_query_trees, all_query_indices, self.children, create_output_string, filters) merged_partial_answers = [] # merged_partial_answers_architecture = [] i_question = 0 # i_child is necessary, because some queries may be answered at the beginning and were not passed to children. # i_child is used to point where we are inside answers i_answer = 0 # go over all permanent and temporary query trees while i_question < len(active_permanent_query_trees) + len(active_temporary_query_trees): # permanent query trees always have left and right child i_answer = self.order_dependent_queries(active_permanent_query_trees, active_temporary_query_trees, partial_subtrees, partial_subtrees_index, partial_subtrees_deprel, create_output_string, merged_partial_answers, i_question, i_answer, filters) i_question += 1 for i in range(len(active_permanent_query_trees)): # TODO FINALIZE RESULT # erase first and last braclets when adding new query result add_subtree = [subtree.finalize_result() for subtree in merged_partial_answers[i]] # if 0 < len(active_permanent_query_trees): complete_answers[i].extend(add_subtree) # completed_subtrees[i].extend(merged_partial_subtrees[i]) # answers to valid queries partial_answers = [[] for i in range(len(temporary_query_trees))] for inside_i, outside_i in enumerate(successful_temporary_queries): # partial_answers_architecture[outside_i] = merged_partial_answers_architecture[len(active_permanent_query_trees) + inside_i] partial_answers[outside_i] = merged_partial_answers[ len(active_permanent_query_trees) + inside_i] # return subtrees_architecture, subtrees, completed_subtrees return partial_answers, complete_answers # return merged_partial_subtrees_architecture[len(active_permanent_query_trees):], merged_partial_subtrees[len(active_permanent_query_trees):], completed_subtrees @staticmethod def merge_results(left_parts, right_parts, separator, left=True): if not left_parts: # return all right_parts return [r_p.add_separator(separator, left) for r_p in right_parts] # if left: # return [r_p + separator for r_p in right_parts] # # return [r_p.add_separator(separator, left) for r_p in right_parts] # else: # return [separator + r_p for r_p in right_parts] if not right_parts: return [l_p.add_separator(separator, False) for l_p in left_parts] # return [separator + l_p for l_p in left_parts] merged_results = [] for left_part in left_parts: for right_part in right_parts: merged_results.append(left_part.merge_results(right_part, separator)) # if separator: # if left: # merged_results.append(left_part + right_part + separator) # else: # merged_results.append(left_part + separator + right_part) # else: # merged_results.append(left_part + right_part) return merged_results @staticmethod def merge_answer(answer1, answer2, base_answer_i, answer_j): merged_results = [] merged_indices = [] for answer1p_i, old_result in enumerate(answer1): for answer2p_i, new_result in enumerate(answer2): if answer1p_i != answer2p_i: new_indices = [answer1p_i] + [answer2p_i] sorted_indices = sorted(new_indices) if sorted_indices in merged_indices: test = merged_indices.index(sorted(new_indices)) # TODO add comparison answers with different indices if equal than ignore merged_results.append(old_result + new_result) merged_indices.append(new_indices) return merged_results, merged_indices def create_output_children(self, children, new_results, filters, indices, deprel): # if create_output_string_form(self) == 'prijel': # print('HERE!@@!') # if create_output_string_form(self) == 'utišal': # print('HERE!@@!') # if len(new_results) > 1: # print('HERE') merged_results = [] for i_child, child in enumerate(children): l_res = [] r_res = [] if filters['node_order']: new_child = child else: # a = [['tistega', 'dne'], ['sem', 'bil']] # b = sorted(a) # TODO CHECK IF THIS WORKS FOR CERTIAN new_child = sorted(child, key=lambda x: x[0].key) for i_answer, answer in enumerate(new_child): # res += '(' + el + ') < ' if not filters['node_order'] or indices[i_child][i_answer] < self.children_split: if filters['dependency_type']: separator = ' <' + deprel[i_child][i_answer] + ' ' else: separator = ' < ' l_res = self.merge_results(l_res, answer, separator, left=True) # l_res += answer + separator else: if filters['dependency_type']: separator = ' >' + deprel[i_child][i_answer] + ' ' else: separator = ' > ' r_res = self.merge_results(r_res, answer, separator, left=False) # r_res += separator + answer if l_res: l_res_combined = self.merge_results(l_res, new_results, None) if r_res: r_res_combined = self.merge_results(l_res_combined, r_res, None) # merged_results.extend(['(' + el + ')' for el in r_res_combined]) merged_results.extend([el.put_in_bracelets() for el in r_res_combined]) else: merged_results.extend([el.put_in_bracelets() for el in l_res_combined]) elif r_res: r_res_combined = self.merge_results(new_results, r_res, None) merged_results.extend(['(' + el + ')' for el in r_res_combined]) # merged_results.append('(' + l_res + new_result + r_res + ')') return merged_results @staticmethod def create_output_left_children(left_children, new_results, filters): merged_results = [] for child in left_children: for new_result in new_results: res = '' if type(child) == str: # res += '(' + child + ') < ' res += child + ' < ' else: if filters['node_order']: new_child = child else: new_child = sorted(child) for el in new_child: # res += '(' + el + ') < ' res += el + ' < ' merged_results.append('(' + res + new_result + ')') return merged_results @staticmethod def create_output_right_children(new_results, right_children, filters): merged_results = [] for child in right_children: for new_result in new_results: res = '' if type(child) == str: res += ' > ' + child # res += ' > (' + child + ')' else: if filters['node_order']: new_child = child else: new_child = sorted(child) for el in new_child: res += ' > ' + el # res += ' > (' + el + ')' merged_results.append('(' + new_result + res + ')') # merged_results.append(new_result + ' > (' + child + ')') return merged_results # @staticmethod def create_answers(self, separated_answers, separated_answers_deprel, answer_length, filters): # TODO # node_order = False partly_built_trees = [[None] * answer_length] # partly_built_trees_architecture = [[None] * answer_length] partly_built_trees_architecture_indices = [[None] * answer_length] partly_built_trees_deprel = [[None] * answer_length] built_trees = [] # built_trees_architecture = [] built_trees_architecture_indices = [] built_trees_deprel = [] # if create_output_string_form(self) == 'Dogodek': # print('HERE!@@!') # iterate over children first, so that new partly built trees are added only after all results of specific # child are added for child_i in range(len(separated_answers[0])): new_partly_built_trees = [] # new_partly_built_trees_architecture = [] new_partly_built_trees_architecture_indices = [] new_partly_built_trees_deprel = [] # iterate over answers parts for answer_part_i in range(len(separated_answers)): # necessary because some parts do not pass filters and are not added # if child_i < len(separated_answers[answer_part_i]) and separated_answers[answer_part_i][child_i]: if separated_answers[answer_part_i][child_i]: for tree_part_i, tree_part in enumerate(partly_built_trees): # if tree_part[answer_part_i] equals None add new element in its place if not tree_part[answer_part_i]: new_tree_part = copy(tree_part) # new_tree_part_architecture = copy(partly_built_trees_architecture[tree_part_i]) new_tree_part_architecture_indices = copy(partly_built_trees_architecture_indices[tree_part_i]) new_tree_part_deprel = copy(partly_built_trees_deprel[tree_part_i]) new_tree_part[answer_part_i] = separated_answers[answer_part_i][child_i] # new_tree_part_architecture[answer_part_i] = separated_answers_architecture[answer_part_i][child_i] new_tree_part_architecture_indices[answer_part_i] = child_i new_tree_part_deprel[answer_part_i] = separated_answers_deprel[answer_part_i][child_i] completed_tree_part = True for val_i, val in enumerate(new_tree_part): if not val: completed_tree_part = False if completed_tree_part: built_trees.append(new_tree_part) # built_trees_architecture.append(new_tree_part_architecture) built_trees_architecture_indices.append(new_tree_part_architecture_indices) built_trees_deprel.append(new_tree_part_deprel) else: new_partly_built_trees.append(new_tree_part) # new_partly_built_trees_architecture.append(new_tree_part_architecture) new_partly_built_trees_architecture_indices.append(new_tree_part_architecture_indices) new_partly_built_trees_deprel.append(new_tree_part_deprel) else: # pass over repetitions of same words pass # print('HERE!!!') partly_built_trees.extend(new_partly_built_trees) # partly_built_trees_architecture.extend(new_partly_built_trees_architecture) partly_built_trees_architecture_indices.extend(new_partly_built_trees_architecture_indices) partly_built_trees_deprel.extend(new_partly_built_trees_deprel) l_ordered_built_trees, l_ordered_built_trees_index, l_ordered_built_trees_deprel, unique_trees_architecture = [], [], [], [] if built_trees: # sort 3 arrays by architecture indices # temp_trees_index, temp_trees, temp_trees_architectures, temp_trees_deprel = (list(t) for t in zip( # *sorted(zip(built_trees_architecture_indices, built_trees, built_trees_architecture, built_trees_deprel)))) temp_trees_index, temp_trees, temp_trees_deprel = (list(t) for t in zip( *sorted(zip(built_trees_architecture_indices, built_trees, built_trees_deprel)))) # order outputs and erase duplicates # for tree, tree_architecture, tree_architecture_indice in zip(built_trees, built_trees_architecture, built_trees_architecture_indices): # for tree, tree_architecture, tree_index, tree_deprel in zip(temp_trees, temp_trees_architectures, temp_trees_index, temp_trees_deprel): for tree, tree_index, tree_deprel in zip(temp_trees, temp_trees_index, temp_trees_deprel): # new_tree_index, new_tree, new_tree_architecture, new_tree_deprel = (list(t) for t in zip(*sorted(zip(tree_index, tree, tree_architecture, tree_deprel)))) new_tree_index, new_tree, new_tree_deprel = (list(t) for t in zip(*sorted(zip(tree_index, tree, tree_deprel)))) # TODO check if inside new_tree_architecture in ordered_built_trees_architecture and if not append! is_unique = True for unique_tree in unique_trees_architecture: already_in = True for part_i in range(len(unique_tree)): test = unique_tree[part_i][0].order_key if len(unique_tree[part_i]) != len(new_tree[part_i]) or any(unique_tree[part_i][i_unique_part].order_key != new_tree[part_i][i_unique_part].order_key for i_unique_part in range(len(unique_tree[part_i]))): # if unique_tree[part_i].order_key != new_tree[part_i].order_key: already_in = False break if already_in: is_unique = False break if is_unique: unique_trees_architecture.append(new_tree) # if not filters['node_order']: # l_ordered_built_trees_architecture.append(new_tree_architecture) l_ordered_built_trees.append(new_tree) l_ordered_built_trees_index.append(new_tree_index) l_ordered_built_trees_deprel.append(new_tree_deprel) # TODO NODE ORDER = FALSE # else: # # ordered_built_trees_architecture.append(tree_architecture) # ordered_built_trees.append(tree) # print("test") # for answer1_i, answer1 in enumerate(separated_answers): # for answer2_i, answer2 in enumerate(separated_answers): # if answer1_i != answer2_i: # res, res_i = self.merge_answer(answer1, answer2, answer1_i, answer2_i) # print('aaa') # # pass return l_ordered_built_trees, l_ordered_built_trees_index, l_ordered_built_trees_deprel def create_output_string_form(tree): return tree.form.get_value() def create_output_string_deprel(tree): return tree.deprel.get_value() def create_output_string_lemma(tree): return tree.lemma.get_value() def create_output_string_upos(tree): return tree.upos.get_value() def create_output_string_xpos(tree): return tree.xpos.get_value() def create_output_string_feats(tree): return tree.feats.get_value()